[1,4] Phenylthio Migrations in the Rearrangement of 2,4,4-Tris(phenylthio)butanols

Maria-Jesús Villa and Stuart Warren*

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

2,4,4-Tris(phenylthio) butanols rearranged by a $[1,4]-\mathrm{PhS}$ shift to give an E, Z mixture of vinyl sulfides with thionyl chloride but only the Z isomer with toluene-p-sulfonic acid. The [1,4]-PhS shift occurred only if another PhS group was present β to the hydroxyl group. The mechanism and scope of the reaction and the preparation of 2,4,4-tris(phenylthio) butanols via Michael addition of dithioacetal nucleophiles to methyl crotonate followed by α-sulfenylation is reported.

We know ${ }^{1}$ that thionyl chloride and triethylamine cause [1,2] phenylthio (PhS) migration on 2,2-bis(phenylthio)ethanols 1 under conditions of kinetic control to give 2,3-bis(phenylthio)propenes 2 and that on exposure to light isomerization of the allylic sulfides $\mathbf{2}$ and $\mathbf{3}$ occurs by a [1,3]- PhS shift. The alcohols

4 having only one PhS group have been transformed into the allyl sulfides 5 and 6 by similar acid-catalysed [1,2]- and photochemical [1,3]-PhS migrations on treatment with toluene- p-sulfonic acid (TsOH) under conditions of thermodynamic control. ${ }^{2}$
In a preliminary communication, ${ }^{3}$ we described the rearrangement of 2,4,4-tris(phenylthio)butanols 7, substrates with both bis(phenylthio) and phenylthio groups present in the same molecule. Under conditions of thermodynamic or kinetic control, an unusual ${ }^{4}$ long distance PhS shift, a [1,4]-PhS migration, gives the vinyl sulfides 8. In this paper, full details of the reaction are given including the extension of the $[1,4]-\mathrm{PhS}$ shift into substrates with a tertiary, secondary or primary migration terminus and the synthesis of the compounds used in this study.

Our route (Scheme 1) to prepare the starting material 2,4,4tris(phenylthio)butanols 7 started with a Michael addition of lithium derivatives of bis(phenylthio)acetals ${ }^{1} 9$ to methyl crotonate in THF at low temperature $\left(-78^{\circ} \mathrm{C}\right)$. The resulting lithium enolates 10 were silylated directly with chlorotrimethylsilane and triethylamine and the silyl enol ethers 11 were sulfenylated with benzenesulfenyl chloride in THF solution. ${ }^{5}$ Mixtures of diastereoisomeric methyl 2,4,4-tris(phenylthio)alkyl esters syn-12 and anti-12 were obtained in good yields, the syn isomer being the major product. \dagger The results are summarized in Table 1.

The sense of the stereoselectivity is, therefore, that the bis(phenylthio)alkyllithium reagent and the PhS group add anti to the double bond of the ester and is the same as the tandem silyl cuprate-sulfenylation sequence we have already reported. ${ }^{6}$ It is not necessary to use copper with these bis(phenylthio)alkyl-

Scheme 1 Reagents and conditions: i, BuLi, TMEDA, THF, $-78^{\circ} \mathrm{C}$; ii, methyl crotonate, THF, $-78^{\circ} \mathrm{C}$; iii, $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}$ to RT; iv, $\mathrm{PhSCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to RT; v, $\mathbf{1 3}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to RT ; vi, $\mathrm{Me}_{3} \mathrm{SiCl}$, $\mathrm{Et}_{3} \mathrm{~N},-70^{\circ} \mathrm{C}$ to RT ; vii, $\mathrm{AcOH},-78^{\circ} \mathrm{C}$ to RT

lithium reagents. If the PhS group is already present in the unsaturated ester ${ }^{7}$ 13, conjugate addition of the lithiated bis(phenylthio) acetal $9 \mathrm{~d}\left(\mathrm{R}^{1}=\operatorname{Pr}, \mathrm{R}^{2}=\mathrm{H}\right.$) followed by protonation of the silyl enol ether 14 with acetic acid

[^0]Table 1 Synthesis of methyl 2,4,4-tris(phenylthio)esters 12 and 2,4,4tris(phenylthio)butanols 16

Starting material	R^{1}	R^{2}	R^{3}	$\begin{aligned} & \text { syn-12: } \\ & \text { anti-12 } \end{aligned}$	$\begin{aligned} & \text { Yield(\%) } \% \text {) } \\ & \text { syn- }^{\mathbf{1 2}} \end{aligned}$	Yield (\%) syn-16 ${ }^{\text {c }}$
9 a	H	H	Me	77:23	$45^{\text {d }}$	-
9b	Me	H	Me	78:22	40	64 (29)
9c	Me	Me	Me	e	43	78
9d	Et	H	Me	e	52	80
9 e	$\mathrm{CH}_{2}=\mathrm{CH}$	H	Me	86:14	60	42 (32)
9 f	Pr	H	Me	80:20	53	50 (39)
9 g	PhCH_{2}	H	Me	65:40	$65^{\text {d }}$	40 (35)
9 g	PhCH_{2}	H	H	-	f	38 (35)

${ }^{\text {a }}$ syn: anti Ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy on the crude reaction mixture and stereochemistry established by coupling constants. ${ }^{b}$ Isomers separated by flash column chromatography. ${ }^{c}$ Yield of recovered syn-12 in brackets. ${ }^{d}$ Yield of the mixture. ${ }^{e}$ Ratio not determined. ${ }^{f}$ syn-12h obtained in a 54% yield.
unexpectedly provided a $64: 36$ mixture of $s y n$ - and anti-esters 12 with weak syn selectivity.

The high anti diastereoselectivity of sulfenylation can be explained if the electrophile (PhSCl) attacks the less hindered face of the Houk conformation of the silyl enol ether 11a. ${ }^{8}$ The bulk of the dithioacetal unit has been reported ${ }^{9}$ to provide effective stereocontrol in alkylations of acyclic and cyclic α, β unsaturated esters through the corresponding enolates. This fact, together with the lack of coordination by the sulfur group (it would have to form a seven-membered chelate) may also be responsible for the observed highly efficient* 1,2-asymmetric induction in alkylations of enolates. ${ }^{9 a, 10} \mathrm{On}$ the other hand, the stereochemical outcome in the protonation of the silyl enol ether $\mathbf{1 5}$ can be rationalized if conformation $\mathbf{1 5 b}$ is favoured for steric reasons. The electrophile $\left(\mathrm{H}^{+}\right)$attacks from the less hindered side to produce, as it happens, the same syn-isomer preferentially.

Methyllithium added cleanly to the 2,4,4-tris(phenylthio) esters syn-12 to give 2,4,4-tris(phenylthio)alcohols syn-16 (Table 1), which were submitted to thermodynamic and kinetic controlled [1,2]-PhS shift reaction conditions (Scheme 2).

Scheme 2 Reagents and conditions: Method A: TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; Method B: $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CCl}_{4}, 0^{\circ} \mathrm{C}$

When the tertiary alcohols syn-16 were treated in the dark with TsOH in dichloromethane under reflux (Method A), reasonable yields of the [1,4]-PhS shift products, pure vinyl sulfides $Z-17$, were obtained $(50-60 \%)$. Reaction of syn-16 with thionyl chloride and triethylamine in carbon tetrachloride at $0^{\circ} \mathrm{C}$ for

* A lower diastereoselectivity has been reported in Fleming and Yamamoto's results on diastereoselective alkylation of enolates when using dimethylphenylsilyl and butyl, respectively, as stereocontrolling units. ${ }^{10}$
a few minutes in the dark (Method B), provided a mixture of vinyl sulfides $E-17$ and $Z-17(50-65 \%)$, together with the alkene $18(25-30 \%)$. The results are summarized in Table 2.

Z. 17

E-17

Configurations of the vinylic sulfides 17 were assigned on the basis that vinylic $\left(\mathrm{H}^{\mathrm{A}}\right)$ and allylic $\left(\mathrm{H}^{\mathrm{B}}\right)$ protons had different and characteristic signals in their NMR spectra, those for one isomer being outside those for the other. In fact, it has been reported ${ }^{1}$ that for 2,3-bis(phenylthio)propenes the vinyl proton resonance of the Z isomer occurs at lower field than that of E isomer, whereas the allylic proton resonance is at lower field in the E isomer than in the Z isomer. Table 3 gives a list of chemical shifts of vinylic $\left(\mathrm{H}^{\mathrm{A}}\right)$ and allylic $\left(\mathrm{H}^{\mathrm{B}}\right)$ protons for all compounds 17 . The Z-isomer is more stable than the E-isomer, whose formation is favoured kinetically. The isomer ratios given in Table 2 were easily measured by NMR and give the composition of the mixture of vinyl sulfides E,Z-17 obtained by method B.

Mechanisms for [1,4]-PhS migration are summarized in Scheme 3 and we suggest a route via the five-membered ring intermediate 22. Formation of 22 could occur by initial formation 20C of an episulfonium ion 21, which would decompose by attack of the sulfur atom of the dithioacetal unit 21C, or by direct [1,4] participation by one PhS group of the bis(phenylthio) group with the loss of OR (route D, 20D). Route

Scheme 3 Mechanisms for the [1,4]-PhS shift

Table 2 Rearrangement of 2,4,4-tris(phenylthio)butanols 16

Starting material	R^{1}	R^{2}	R^{3}	$\begin{aligned} & \text { Method A } \\ & Z-17(\%) \end{aligned}$	Method B		
					17 (\%)	$E: Z$	18 (\%)
syn-16b	Me	H	Me	55	52	57:48	25
syn-16c	Me	Me	Me	60	82		a
syn-16d	Et	H	Me	64	68	71:29	a
syn-16e	$\mathrm{CH}_{2}=\mathrm{CH}$	H	Me	b	b		25
syn-16f	Pr	H	Me	49	49	64:36	27
$\text { syn } 16 \mathrm{~g}$	PhCH_{2}	H	Me	47	52	69:31	34
syn-16h	PhCH_{2}	H	H	c	$53^{\text {d }}$	22:78	a

${ }^{a} \mathbf{1 8 c}, \mathbf{1 8 d}$ and 18 h were not isolated. ${ }^{b}$ Mixture of products: 17 e not isolated. ${ }^{c} 47 \%$ of a $73: 27$ mixture of $Z: E-17 \mathrm{~h}$ and 12% of a $63: 37$ mixture of $Z: E$-6-methyl-1-phenyl-3,5,6-trisphenylthiohept-3-ene 19 h were obtained. ${ }^{d} 8 \%$ of a $64: 36$ mixture of $Z: E-19 \mathrm{~h}$ was also obtained.

Table 3 Chemical shifts δ (p.p.m.) and coupling constants $J(\mathrm{~Hz})$ of the vinylic $\left(\mathrm{H}^{\mathrm{A}}\right)$, allylic $\left(\mathrm{H}^{\mathrm{B}}\right)$ and homoallylic $\left(\mathrm{H}^{\mathrm{C}}\right)$ protons of the trisphenylthio compounds 17

Compd.	R^{1}	R^{2}	$\mathrm{H}^{\text {A }}$	$\mathrm{H}^{\text {B }}$	H^{C}
Z-17b	Me	Me	6.25	3.21	3.82
			q, $J 6.6$	q, $J 5.9$	d, J1.6
E-17b	Me	Me	5.49	3.93	3.75
			q, $J 7.0$	dq, $\boldsymbol{J} 2.5,7.0$	d, J2.0
Z-17d	Et	Me	6.16	3.20	3.83
			t, J 7.0	q, $J 7.0$	s
E-17d	Et	Me	5.40	3.93	3.75
			t, $J 7.3$	dq, $\boldsymbol{J} 2.0,7.0$	d, $J 2.0$
Z-17f	Pr	Me	6.19	3.22	3.84
			t, $J 6.6$	q, $J 6.9$	d, ${ }^{1.5}$
E-17f	Pr	Me	5.45	3.93	3.75
			t, J 7.3	$\mathrm{dq}, J 2.4,7.3$	d, J 2.4
Z-17g	PhCH_{2}	Me	6.34	3.29	
			t, J 6.7	q, $J 6.9$	d, J1.4
$E-17 \mathrm{~g}$	PhCH_{2}	Me	5.59	4.10	3.82
			t, 7.5	dq, J 2.2, 7.0	d, J 2.2
Z-17h	PhCH_{2}	H	$\begin{aligned} & 6.31 \\ & \mathrm{t}, J 7.3 \end{aligned}$	m, 3.90-3.62	
E-17h	PhCH_{2}	H	6.19	m, 3.90-3.62	
			t, J 7.0		

C can be rationalized on the basis that no [1,2]-PhS migration 'uphill' (secondary origin to tertiary terminus) via an episulfonium ion 21 has been observed without the assistance of silicon, ${ }^{2.12}$ while route D precludes the assistance of the PhS group β to the OH . The favourability of sulfur participation through cyclic sulfonium salts normally follows ${ }^{11}$ the order of ring sizes: $3>5>6>4$. Cleavage of the $\mathrm{C}-\mathrm{H}$ bond can occur from 22 (route E) or from the rearranged cation 23 (route F). Formation of mixtures rich in the less stable E-17 using method B suggests that under these conditions route E should be preferred, as the transition state from 23 would so closely resemble the products 17 that $Z-17$ should be favoured. Under acidic conditions both routes may be possible. ${ }^{1}$

Evidence against route D came from the by-product 18, formed by sulfur extrusion from 21. However, to test unequivocally the participation of the $\beta-\mathrm{PhS}$ group, tertiary alcohols lacking this group were prepared (Scheme 4). Thus, methyl 4,4-bis(phenylthio)esters syn-24c and syn-24d were available in good yields by 1,4 -addition of lithium derivatives of bis(phenylthio)acetals 9 c and 9 d to methyl crotonate followed by methylation. Subsequent addition of 2 equiv. of methyllithium provided 4,4-bis(phenylthio)alcohols syn-25c and syn25d, which were submitted to the rearrangement conditions. No $[1,4]-\mathrm{PhS}$ shift occurred, the dehydration product 26 alone being formed. We therefore prefer route C followed by E or F depending on the conditions.
The stereochemistry of the alkene resulting from the [1,4]PhS shift can be rationalized (Scheme 5) on the basis of the

Scheme 4 Reagents and conditions: i, BuLi, TMEDA, THF, $-78^{\circ} \mathrm{C}$; ii, methyl crotonate, THF, $-78^{\circ} \mathrm{C}$; iii, MeI, $-78^{\circ} \mathrm{C}$ to RT ; iv, MeLi, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}$; v, Method B: $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CCl}_{4}, 0^{\circ} \mathrm{C}$

Scheme 5 Stereochemistry of double bond formation after the [1,4]PhS shift
proposed mechanism. Either diastereotopic phenylthio group may participate in the conversion of 21 into 22 a or $\mathbf{2 2 b}$. Either $\mathrm{C}-\mathrm{H}^{\mathrm{a}}$ or $\mathrm{C}-\mathrm{H}^{\mathrm{b}}$ bonds in 22a and 22b can become anti-periplanar to the $\mathrm{C}-\mathrm{S}^{+}$bond being broken. The conformers 21a and 22b lead to the E-isomer of 17 whereas 22a' and 22b' lead to $Z-17$. The Z-isomer is thermodynamically favoured because the largest groups are anti. The kinetic preference for the E isomer follows from the relative instability of $22 \mathbf{a}^{\prime}$, which has R^{1} on the same surface of the molecule as the flanking PhS and Me groups. Method B therefore follows route E.

On the other hand, when method B was applied to $\mathbf{1 2 h}$, mixtures rich in the more stable Z-isomer 17 h were formed together with $Z: E$ mixtures of 6 -methyl-1-phenyl-3,5,6-tris-(phenylthio)hept-3-ene 19h. These facts suggest that mechanism F is operating in this case. The formation of 19 h can only be explained if the loss of a proton $\left(\mathrm{H}^{\mathrm{c}}\right.$ or $\left.\mathrm{H}^{d}\right)$ occurs from the rearranged cation 23h, whose geometry clearly favours the

Table 4 Synthesis of 2,4,4-trisphenylthioaldehydes 28

Starting material	R^{1}	Oxidation method ${ }^{a}$	$T\left({ }^{\circ} \mathrm{C}\right) / t^{\text {b }}$	$\begin{aligned} & \text { syn-28: } \\ & \text { anti- } 28{ }^{\text {c }} \end{aligned}$	$\begin{aligned} & \text { Yield (\%) } \\ & \text { of } 28 \end{aligned}$
syn-27b	Me	Swern (TEA)	$-78 / 15 \mathrm{~min}$	89:11	70
syn-27d	Et	Swern (TEA)	$-78 / 15 \mathrm{~min}$	82:18	64
$s y n-27 \mathrm{~d}$	Et	Swern (DIEA)	$-78 / 10 \mathrm{~min}$	81:19	17
syn-27d	Et	Swern (DIEA)	$-78 / 1 \mathrm{~h}$	81:19	67
syn-27d	Et	Swern (TEA)	RT/48 h	41:58	-
syn-27d	Et	PDC	RT/24 h	81:19	30
syn-27d	Et	PCC	$\mathrm{RT} / 3 \mathrm{~h}$	63:37	40
syn-27d	Et	PCC	RT/1 h	66:34	45
syn-27g	PhCH_{2}	Swern (TEA)	-78/15 min	84:16	83

${ }^{a}$ TEA $=$ triethylamine; DIEA = diisopropylethylamine. ${ }^{b}$ In Swern method, time and temperature of treatment with the base is given. ${ }^{c}$ syn:anti Ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy on the crude reaction mixture and stereochemistry established by coupling constants.

preferential formation of the Z-isomer. The same rearranged cation 23h could lose H^{a} or H^{b} and give $\mathrm{Z-17h}$. Alternatively, formation of this conjugated alkene may be reversible.

To study the scope of the $[1,4]-\mathrm{PhS}$ shift, primary and secondary alcohols were also prepared (Scheme 6). Thus, the esters syn-12 were reduced with lithium aluminium hydride and primary alcohols syn- 27 were obtained. However, all attempted rearrangements of these alcohols led to complex mixtures of products. The primary alcohols 27 were oxidized to the corresponding 2-phenylthio aldehydes 28. Subsequent addition of methyllithium provided secondary alcohols 29 in good yields. Oxidation of syn-27 was accomplished under Swern reaction conditions ${ }^{13}$ or by using PCC or PDC in dichoromethane solution. ${ }^{14}$ In all cases a mixture of diastereoisomeric aldehydes 28 was obtained, the syn isomer always being favoured (Table 4). Swern oxidation was performed at $-78^{\circ} \mathrm{C}$ only for 15 min as longer periods or higher temperatures favoured the loss of stereochemical integrity. We have reported the preparation of optically active 2 -phenylthio aldehydes by a related route. ${ }^{15}$ The use of PCC or PDC gave slightly lower diastereoisomeric ratios but very poor yields ($30-40 \%$). This loss of stereochemical integrity is probably due to enolization of the 2-PhS aldehyde under the reaction conditions. ${ }^{15}$ Addition of methyllithium to

[^1]

Scheme 6 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; ii, Swern oxidation; iii, $\mathrm{MeLi} \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}$; iv, $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CCl}_{4}, 0^{\circ} \mathrm{C}$
the aldehydes 28 provided an inseparable mixture of the two Felkin secondary alcohols anti,syn- and anti,anti-29.* The stereochemistry was assigned by NMR on the corresponding anti,syn- and anti,anti-benzoates 30, easily separated by flash column chromatography on silica gel. The $11: 1$ mixture of the alcohols 29 was rearranged with TsOH (method A) or thionyl chloride and triethylamine (method B). However, [1,4]-PhS shift occurred successfully only with method B when an E / Z mixture of a single diastereoisomer of the vinyl sufides $E, Z-31$ was obtained in reasonable yield (55%). This single diastereoisomer can only be formed from the major diastereoisomer of 29 and so these experiments show that the reaction is stereospecific, but cannot definitely say in what sense. We assume that the $[1,4]-\mathrm{PhS}$ shift occurs with retention as inversion occurs in both the $[1,2]$ and the $[1,4]$ steps. Previously, secondary to secondary PhS shifts have been found with [1,4$]$-hydroxyl participation in the formation of tetrahydrofurans. ${ }^{16}$ Investigations into the application of the [1,4]PhS shift are continuing: we have now found conditions where neither the PhS group next to the alcohol nor the second PhS group at the migration origin is necessary. ${ }^{17}$

Experimental

General experimental details have been published in this journal. ${ }^{18}$ Values of coupling constants (J) are quoted in Hz .

Methyl(2RS, 3RS)-3-Methyl-2,4,4-tris(phenylthio)heptanoate 12d $\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}\right)$.-Typical procedure. Butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $8.5 \mathrm{~cm}^{3}, 13.6 \mathrm{mmol}$) was added to a stirred solution of 1,1-bis(phenylthio)butane 9d $(3.16 \mathrm{~g}, 11.9 \mathrm{mmol})$ in dry THF $\left(115 \mathrm{~cm}^{3}\right)$ and TMEDA (1.8 $\mathrm{cm}^{3}, 12.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon. After 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of methyl crotonate (1.05 $\mathrm{g}, 10.5 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) was added dropwise. The mixture was stirred at this temperature for 1 h , after which trimethylsilyl chloride $\left(6 \mathrm{~cm}^{3}, 47 \mathrm{mmol}\right)$ followed by triethylamine ($6.6 \mathrm{~cm}^{3}, 47 \mathrm{mmol}$) were added. The cooling bath was removed and the solution warmed to room temperature and stirred for 2 h . The contents of the flask were recooled to $-78^{\circ} \mathrm{C}$ and a solution of benzenesulfenyl chloride in THF was added dropwise. [This solution was prepared by addition of sulfuryl chloride $\left(0.7 \mathrm{~cm}^{3}, 8.7 \mathrm{mmol}\right)$ to diphenyl disulfide $(1.86$ $\mathrm{g}, 8.5 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) containing dry pyridine (4 drops) and the mixture stirred for 2 h at room temperature under an argon atmosphere. The solution was used without further purification.] After 5 min , the mixture was allowed to come slowly to room temperature and then quenched with saturated aqueous ammonium chloride $\left(150 \mathrm{~cm}^{3}\right)$. The mixture was extracted with ether $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed with water $\left(2 \times 25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with hexane-dichloromethane ($1: 1$), to give the ester syn-12d ($2.63 \mathrm{~g}, 52 \%$), as a viscous oil, R_{F} [hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)\right] 0.54$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1710(\mathrm{CO})$ and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.67-$ $7.18(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.68(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{CHSPh}), 3.56(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.79(1 \mathrm{H}, \mathrm{dq}, J 3.6$ and $7, \mathrm{CHMe}), 1.69-1.43[4 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right], 1.39(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$ and $0.7\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{CH} \mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 18.1\left(\mathrm{CH}_{2} \mathrm{Me}\right), 40.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 42.6(\mathrm{CHMe}), 52.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.6(\mathrm{CHSPh})$, $74.5\left[\mathrm{C}(\mathrm{SPh})_{2}\right], 127.7,128.1,128.5,128.6,129.0,129.3,132.4$, $137.0,137.2(\mathrm{ArC}), 131.8,132.0,135.0(\mathrm{ArC-S})$ and 174.4 ($\mathrm{CO}_{2} \mathrm{Me}$); m/z 343 ($15 \%, \mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OS}$), $233\left(55, \mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OS}-\mathrm{PhSH}\right), 123\left(45, \mathrm{PhSCH}_{2}\right), 110(100, \mathrm{PhSH})$ and 109 (38, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OS}$, 343.1193. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OS}, 343.1185$).

Methyl (2RS,3RS)- and Methyl (2RS,3SR)-3-Methyl-2,4,4tris(phenylthio)pentanoate 12a ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$). - In the same way, 1,1-bis(phenylthio)ethane 9a ($2.46 \mathrm{~g}, 10 \mathrm{mmol}$), TMEDA ($1.6 \mathrm{~cm}^{3}, 11.2 \mathrm{mmol}$), butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $\left.7.5 \mathrm{~cm}^{3}, 12 \mathrm{mmol}\right)$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$, methyl crotonate $(0.9 \mathrm{~g}, 9 \mathrm{mmol})$ in dry THF $\left(9 \mathrm{~cm}^{3}\right)$, trimethylsilyl chloride $\left(4.5 \mathrm{~cm}^{3}, 35.5 \mathrm{mmol}\right)$, triethylamine (5 $\mathrm{cm}^{3}, 35.5 \mathrm{mmol}$) and benzenesulfenyl chloride [from sulfuryl chloride $\left(0.6 \mathrm{~cm}^{3}, 7.5 \mathrm{mmol}\right)$, and diphenyl disulfide $(1.57 \mathrm{~g}, 7.2$ mmol) in dry THF $\left(7 \mathrm{~cm}^{3}\right)$] gave an inseparable $3.5: 1$ mixture of the esters syn- and anti-12a ($1.84 \mathrm{~g}, 45 \%$) as an oil, $R_{\mathrm{F}}($ hexane-dichloromethane, $1: 1) 0.7 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1720$ (CO) and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ [* refers to syn isomer, ${ }^{* *}$ refers to anti isomer]: 7.66-7.17 (15 H, m, PhS), 4.84*, 4.43** ($1 \mathrm{H}, 2 \mathrm{~d}, J 3.3$ and $3.2, \mathrm{CHSPh}), 3.71^{*}, 3.58^{* *}(3 \mathrm{H}, 2 \mathrm{~s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.62^{*}, 2.40^{* *}(1 \mathrm{H}, 2 \mathrm{dq}, J 3.3$ and 6.9 , and $J 3.2$ and $7.1, \mathrm{C} H \mathrm{Me}), 1.66^{* *}, 1.50^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 7.1$ and $6.9, \mathrm{CHMe})$, 1.32^{*} and $1.27^{* *}\left[3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Me}(\mathrm{CSPh})_{2}\right.$]; m/z $344\left(3 \%, \mathrm{M}^{+}\right.$$\mathrm{PhSH}), 235\left(50, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 110(100, \mathrm{PhSH})$ and 109 (43, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 344.0911. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 344.090$).

Methyl (2RS,3RS)- and Methyl (2RS,3RS)-3-Methyl-2,4,4tris(phenylthio)hexanoate 12b $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right)$.-In the same way, 1,1-bis(phenylthio)propane $9 \mathrm{~b}(6.5 \mathrm{~g}, 25 \mathrm{mmol})$, TMEDA ($3.9 \mathrm{~cm}^{3}, 28 \mathrm{mmol}$), butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $\left.18.7 \mathrm{~cm}^{3}, 30 \mathrm{mmol}\right)$ in dry THF ($150 \mathrm{~cm}^{3}$),
methyl crotonate $(2.27 \mathrm{~g}, 22.7 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$, trimethylsilyl chloride ($13 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol}$), triethylamine (14.5 $\mathrm{cm}^{3}, 0.1 \mathrm{~mol}$) and benzenesulfenyl chloride [from sulfuryl chloride $\left(1.5 \mathrm{~cm}^{3}, 18.6 \mathrm{mmol}\right)$, and diphenyl disulfide $(3.97 \mathrm{~g}$, 18.2 mmol) in dry THF ($20 \mathrm{~cm}^{3}$)] gave a $3.3: 1$ mixture of the esters syn- and anti-12b. Column chromatography on silica gel eluting with light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)-ethyl acetate ($18: 1$) gave the ester syn-12b ($4.3 \mathrm{~g}, 40 \%$), as an oil, R_{F} (hexanedichloromethane, 1:1) $0.42 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1560(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.64-7.18(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.68(1 \mathrm{H}, \mathrm{d}, J$ $3.7, \mathrm{CHSPh}), 4.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.81(1 \mathrm{H}, \mathrm{dq}, J 3.7$ and 7 , $\mathrm{CHMe}), 1.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.40(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$ and $1.03\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 9.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 13.8$ (CHMe), $30.7\left(\mathrm{CH}_{2}\right), 42.1(\mathrm{CHMe}), 52.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.6$ $(C \mathrm{HSPh}), 74.8\left[\mathrm{C}(\mathrm{SPh})_{2}\right], 127.6,128.4,128.5,128.9,129.2$, $132.4,137.2,137.3$ (ArC), 131.6, $134.9(\mathrm{ArC-S})$ and 173.3 $\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z 358\left(6 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 249\left(100, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhS}$), 217 (30, $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{OMe}$), 189 (23, $\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$), 181 ($28, \mathrm{PhSCHCO} 2 \mathrm{Me}$), 149 (67, MeCHCSPh), $110(95, \mathrm{PhSH})$ and $109(42, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 358.1051 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}-$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 358.1056$).

Methyl (2R,3RS)-3,5-Dimethyl-2,4,4-tris(phenylthio)hexanoate 12c $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}\right)$.-In the same way, 2-methyl-1,1bis(phenylthio) propane $9 \mathrm{c}(1.13 \mathrm{~g}, 4.1 \mathrm{mmol})$, TMEDA (0.59 $\mathrm{cm}^{3}, 4.6 \mathrm{mmol}$), butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; 3 $\left.\mathrm{cm}^{3}, 4.8 \mathrm{mmol}\right)$ in dry THF $\left(40 \mathrm{~cm}^{3}\right)$, methyl crotonate $(0.38 \mathrm{~g}$, $3.8 \mathrm{mmol})$ in dry THF ($4 \mathrm{~cm}^{3}$), trimethylsilyl chloride ($2.3 \mathrm{~cm}^{3}$, $18 \mathrm{mmol})$, triethylamine $\left(2.5 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$ and benzenesulfenyl chloride [from sulfuryl chloride $\left(0.25 \mathrm{~cm}^{3}, 3.1 \mathrm{mmol}\right)$, and diphenyl disulfide ($0.66 \mathrm{~g}, 3.05 \mathrm{mmol}$) in dry THF $\left(5 \mathrm{~cm}^{3}\right)$] gave the ester syn-12c $(0.78 \mathrm{~g}, 43 \%)$ as an oil, R_{F} [hexanedichloromethane (1:1)] 0.55; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.73-7.19(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.87(1 \mathrm{H}, \mathrm{d}$, $J 3.2$, CHSPh $), 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.00(1 \mathrm{H}, \mathrm{dq}, J 3.2$ and $7.2, \mathrm{CHMe}$), $2.46\left(1 \mathrm{H}\right.$, septuplet, $J 6.5, \mathrm{C} H \mathrm{Me}_{2}$), $1.24(3 \mathrm{H}, \mathrm{d}$, $J 7.2, \mathrm{CHMe})$ and $1.17(6 \mathrm{H}, 2 \mathrm{~d}, J 6.5, \mathrm{CHMe} 2) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 14.4 (CHMe), 17.4, $20.8\left(\mathrm{HCMe}_{2}\right), 36.1\left(\mathrm{HCMe}_{2}\right), 43.5$ $(C \mathrm{HMe}), 52.0\left(\mathrm{CO}_{2} \mathrm{Me}\right), 54.5(\mathrm{CHSPh}), 78.2\left[C(\mathrm{SPh})_{2}\right], 127.6$, $128.5,128.6,128.8,129.0,129.1,132.4,136.2,137.6$ (ArC), 131.6, 133.2, 135.3 ($\mathrm{ArC-S}$) and $173.7\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z 372(14 \%$, $\left.\mathrm{M}^{+}-\mathrm{PhSH}\right), 263\left(25, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 203\left(10, \mathrm{M}^{+}-\right.$ $\left.\mathrm{PhSH}-\mathrm{PhS}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right), 191\left(20, \mathrm{M}^{+}-\mathrm{PhSCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, 182 (18, $\left.\mathrm{PhSCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 149$ (30, MeCHCSPh) 123 (17 , $\left.\mathrm{PhSCH}_{2}\right), 110(100, \mathrm{PhSH})$ and $109(35, \mathrm{PhS})\left(\right.$ Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 372.1232. $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2} \quad$ requires $\quad M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 372.1212).

Methyl (2RS,3RS)-3-Methyl-2,4,4-tris(phenylthio)hept-6enoate 12e $\left(\mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}\right)$.-In the same way, 1,1-bisphenylthiobut-3-ene $9 \mathrm{e}(1.03 \mathrm{~g}, 3.76 \mathrm{mmol})$, TMEDA ($0.675 \mathrm{~cm}^{3}, 5.3 \mathrm{mmol}$), butyllithium $\left(1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in hexane; $3 \mathrm{~cm}, 4.8 \mathrm{mmol}$) in dry THF ($40 \mathrm{~cm}^{3}$), methyl crotonate ($0.342 \mathrm{~g}, 3.4 \mathrm{mmol}$) in dry THF $\left(4 \mathrm{~cm}^{3}\right)$, trimethylsilyl chloride $\left(2.3 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$, triethylamine $(2.5$ $\left.\mathrm{cm}^{3}, 18 \mathrm{mmol}\right)$ and benzenesulfenyl chloride [from sulfuryl chloride $\left(0.23 \mathrm{~cm}^{3}, 2.9 \mathrm{mmol}\right)$, and diphenyl disulfide $(0.59 \mathrm{~g}$, $2.7 \mathrm{mmol})$ in dry THF $\left.\left(5 \mathrm{~cm}^{3}\right)\right]$ gave the ester $\operatorname{syn}-12 \mathrm{e}(0.98 \mathrm{~g}$, 60%) as an oil, R_{F} [hexane-dichloromethane (1:1)] 0.35 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.62$7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.96\left(1 \mathrm{H}, \mathrm{m}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.00(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{HC}=\mathrm{CH}_{2}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{C} H \mathrm{SPh}), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $2.80(1 \mathrm{H}, \mathrm{dq}, J 3.4$ and $6.9, \mathrm{C} H \mathrm{Me}), 2.35(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2} \mathrm{CHC}=\mathrm{CH}_{2}\right)$ and $1.43(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $13.7(\mathrm{CHMe}), 42.5\left(\mathrm{CH}_{2}\right), 42.8(\mathrm{CHMe}), 52.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.6$ $(C H S P h), 72.5\left[C(\mathrm{SPh})_{2}\right], 118.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.6,128.5,128.6$, $128.9,129.2,129.3,129.4,132.4,132.9,133.5,137.3,137.4$,
137.5, $137.6\left(\mathrm{ArC}, \mathrm{CH}=\mathrm{CH}_{2}\right), 131.5,135.0(\mathrm{ArC}-\mathrm{S})$ and 173.3 ($\mathrm{CO}_{2} \mathrm{Me}$); m/z 371 ($7 \%, \mathrm{M}^{+}$- PhS), 261 ($40, \mathrm{M}^{+}-\mathrm{PhSH}-$ PhS), 189 (68, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), \quad 182$ (20, $\mathrm{PhSCH}_{2} \mathrm{Me}$), 149 (23, MeCHCSPh), 123 (23, PhSCH_{2}), 110 ($100, \mathrm{PhSH}$) and 109 ($40, \mathrm{PhS}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 371.1155. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 371.1134).

Methyl (2RS,3RS)- and Methyl (2RS,3SR)-3-Methyl-2,4,4tris(phenylthio)heptanoate $\mathbf{1 2 f}\left(\mathrm{R}^{1}=\operatorname{Pr}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}\right)$. -In the same way, 1,1 -bis-phenylthiopentane $9 \mathrm{f}(3.9 \mathrm{~g}$, 13.5 mmol), TMEDA ($2.1 \mathrm{~cm}^{3}, 15 \mathrm{mmol}$), butyllithium (1.6 mol dm^{-3} solution in hexane; $10 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) in dry THF (135 cm^{3}), methyl crotonate ($1.23 \mathrm{~g}, 12.3 \mathrm{mmol}$) in dry THF (12 cm^{3}), trimethylsilyl chloride ($7 \mathrm{~cm}^{3}, 55 \mathrm{mmol}$), triethylamine (8 $\mathrm{cm}^{3}, 55 \mathrm{mmol}$) and benzenesulfenyl chloride [from sulfuryl chloride ($0.8 \mathrm{~cm}^{3}, 10 \mathrm{mmol}$), and diphenyl disulfide (2.14 g , $9.8 \mathrm{mmol})$ in dry THF $\left.\left(10 \mathrm{~cm}^{3}\right)\right]$ gave the ester $\operatorname{syn}-12 \mathrm{f}(3.2 \mathrm{~g}$, 53%) as an oil, $R_{\mathrm{F}}[$ hexane-dichloromethane (1:1)] 0.46 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.64$ $7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.69(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{C} H \mathrm{SPh}), 3.57(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.80(1 \mathrm{H}, \mathrm{dq}, J 3.6$ and $7.2, \mathrm{C} H \mathrm{Me}), 1.48-0.80[6 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.63(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$ and $0.73(3 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \quad \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 13.8\left(\mathrm{CHMe}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 22.1$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 26.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 37.6\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 42.5$ (CHMe), $52.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.5(\mathrm{CHSPh}), 74.3$ [C(SPh $\left.)_{2}\right], 127.5$, 128.4, 128.5, 128.9, 129.1, 129.2, 129.6, 132.9, 133.5, 135.6, 136.9, 137.2, $137.2(\mathrm{ArC}), 131.7,131.9,134.8(\mathrm{ArC}$-S) and 173.3 $\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z} 386\left(27 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 277\left(100, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhS}$), 245 ($30, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{OMe}$), 217 (23, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right), 205\left[20, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CSPh}-\right.$ CHMe], 181 (25, $\mathrm{PhSCHCO}_{2} \mathrm{Me}$), 149 ($30, \mathrm{MeCHCSPh}$), 121 ($40, \mathrm{PhSCH}_{2}$), $110(\mathrm{PhSH})$ and 109 (47, PhS) (Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 386.1374. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 386.1368).

Methyl (2RS,3RS)- and Methyl (2RS,3SR)-3-Methyl-6-phenyl-2,4,4-tris(phenylthio)hexanoate $\mathbf{1 2 g} \quad\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}\right.$, $\mathrm{R}^{2}=\mathrm{H}, \quad \mathrm{R}^{3}=\mathrm{Me}$). - In the same way, 3-phenyl-1,1-bisphenylthiopropane $9 \mathrm{~g}(8.4 \mathrm{~g}, 25 \mathrm{mmol})$, TMEDA ($3.9 \mathrm{~cm}^{3}, 28$ mmol), butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $19 \mathrm{~cm}^{3}$, 30 mmol) in dry THF ($150 \mathrm{~cm}^{3}$), methyl crotonate ($2.3 \mathrm{~g}, 22.3$ mmol) in dry THF (20 cm), trimethylsilyl chloride ($13 \mathrm{~cm}^{3}, 0.1$ mol), triethylamine ($14.5 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol}$) and benzenesulfenyl chloride [from sulfuryl chloride ($1.5 \mathrm{~cm}^{3}, 18.6 \mathrm{mmol}$), and diphenyl disulfide ($3.97 \mathrm{~g}, 18.2 \mathrm{mmol}$) in dry THF $\left(20 \mathrm{~cm}^{3}\right)$] gave the esters syn and anti-12g ($8.1 \mathrm{~g}, 65 \%$), identified by their spectroscopic data [* refers to syn isomer; ${ }^{* *}$ refers to anti isomer]: $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.75-7.09 ($20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph), 4.77*, 4.60** ($1 \mathrm{H}, 2 \mathrm{~d}, J 3.5$ and 2.8, $\mathrm{C} H \mathrm{SPh}$), $3.72^{* *}, 3.57^{*}$ ($3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}$), 2.98-2.61 (3 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ and CH Me$), 2.19-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $1.54^{* *}, 1.48^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 7.2$ and $7, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 11.8^{* *}$, $13.9^{*}(\mathrm{CHMe}), \quad 30.3^{* *}, \quad 30.9^{*}\left(\mathrm{CH}_{2} \mathrm{Ph}\right), \quad 39.3^{* *}, \quad 39.5^{*}$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 42.6^{*}, 47.2^{* *}(\mathrm{CHMe}), 52.0^{* *}, 52.1^{*}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $52.6^{* *}, 53.4^{*}(\mathrm{CHSPh}), 72.1^{* *}, 73.8^{*}\left[\mathrm{C}(\mathrm{SPh})_{2}\right], 125.8,127.6$, 128.1, 128.3, 128.5, 128.7, 128.9, 129.1, 129.2, 132.4, 132.9, 136.7, 136.9, 137.1, 137.2 (ArC), 131.7, 134.8, 141.3 ($\mathrm{ArC}-\mathrm{S}$), $\mathrm{ArC-C})$ and $172.2^{* *}$, $173.3^{*}\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z 435\left(1 \%, \mathrm{M}^{+}-\right.$ PhSH), 325 ($\left.50, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}\right), 215\left(20, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhSH}$), 181 (19, $\mathrm{PhSCHCO}_{2} \mathrm{Me}$), 123 (27, $\left.\mathrm{PhSCH}_{2}\right), 110$ ($70, \mathrm{PhSH}$), 109 (27, PhS) and 91 (100 , PhCH_{2}) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, \quad$ 435.1455. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 435.1446$). These isomers could be separated by flash column chromatography on silica eluting with light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)-ethyl acetate, 20:1.

Methyl 6-Phenyl-2,4,4-tris(phenylthio)hexanoate 12h $\left(\mathrm{R}^{1}=\right.$ $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$).-In the same way, 3-phenyl-1,1-
bis(phenylthio)propane $9 \mathrm{~g}(1.7 \mathrm{~g}, 5.06 \mathrm{mmol})$, TMEDA (0.8 $\mathrm{cm}^{3}, 5.7 \mathrm{mmol}$), butylithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $4.2 \mathrm{~cm}^{3}, 6.7 \mathrm{mmol}$) in dry THF ($50 \mathrm{~cm}^{3}$), methyl acrylate (0.46 g , 4.6 mmol) in dry THF ($5 \mathrm{~cm}^{3}$), trimethylsilyl chloride ($3 \mathrm{~cm}^{3}, 23$ mmol), triethylamine ($3.5 \mathrm{~cm}^{3}, 23 \mathrm{mmol}$) and benzene sulfenyl chloride [from sulfuryl chloride ($0.32 \mathrm{~cm}^{3}, 3.9 \mathrm{mmol}$), and diphenyl disulfide ($0.83 \mathrm{~g}, 3.81 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$] gave the ester $\mathbf{1 2 h}(1.35 \mathrm{~g}, 54 \%)$ as an oil, $R_{\mathrm{F}}($ hexanedichloromethane, 1:1) $0.53 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1720$ (CO) and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.71-6.92(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 4.36(1$ H , dd, $J 2.7$ and $8.5, \mathrm{C} H \mathrm{SPh}$), 3.54 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.02-2.83$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.59\left(1 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.15, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHSPh}\right)$, $2.10\left(1 \mathrm{H}, \mathrm{dd}, J 2.7\right.$ and $\left.15, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CHSPh}\right)$ and $1.85(2 \mathrm{H}, \mathrm{t}, J 8$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 30.8\left(\mathrm{PhCH}_{2}\right), 39.7,40.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CHSPh}\right), 46.6(\mathrm{CHSPh}), 52.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 68.1$ [C(SPh) ${ }_{2}$], 125.9, 128.3, 128.4, 128.6, 128.8, 128.9, 129.2, 129.5, 133.9, 136.6, 136.7 (ArC), 130.6, 131.0, 132.5, 141.1 ($\mathrm{ArC}-\mathrm{S}$, $\mathrm{ArC-C})$ and $172.8\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z 421\left(2 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 311$ (4 , $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}$), 201 ($2, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}-\mathrm{PhSH}$), $110(27, \mathrm{PhSH})$ and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 421.1296. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 421.1290$).

Conjugate Addition of 1,1-Bis(phenylthio)butane 9d to Methyl α-Phenylthiobut-2-enoate 13.-Butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $3.5 \mathrm{~cm}^{3}, 5.6 \mathrm{mmol}$) was added to a stirred solution of $9 \mathrm{~d}(1.38 \mathrm{~g}, 5.2 \mathrm{mmol})$ in dry THF $\left(35 \mathrm{~cm}^{3}\right)$ and TMEDA ($0.7 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon. After 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of the 2-phenylthioacrylate $13(0.95 \mathrm{~g}, 4.8 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise. The mixture was stirred at this temperature for 15 min , after which acetic acid $\left(0.5 \mathrm{~cm}^{3}\right)$ in THF ($1 \mathrm{~cm}^{3}$) was added. The solution was left to warm to room temperature and then saturated aqueous ammonium chloride $\left(50 \mathrm{~cm}^{3}\right.$) was added. The mixture was extracted with ether ($3 \times 50 \mathrm{~cm}^{3}$) and the combined extracts were washed with water $(2 \times 15 \mathrm{~cm})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with hexane-dichloromethane ($1: 1$), to give a $1.8: 1$ mixture of esters syn- and anti12d ($1.13 \mathrm{~g}, 45 \%$).
(3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenylthio)heptan-2-ol 16b: Typical Procedure.-Methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $6 \mathrm{~cm}^{3}, 8.4 \mathrm{mmol}$) was syringed into a flask, equipped with a magnetic stirrer, maintained under an argon atmosphere and containing dry ether $\left(30 \mathrm{~cm}^{3}\right)$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and solution of the syn-ester $\mathbf{1 2 b}(1.7 \mathrm{~g}, 3.8 \mathrm{mmol})$ in ether $\left(8 \mathrm{~cm}^{3}\right)$ was slowly added. The mixture was stirred for 1 h after which it was hydrolysed with saturated aqueous ammonium chloride $\left(40 \mathrm{~cm}^{3}\right)$ and extracted with ether (3×30 $\left.\mathrm{cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash column chromatography on silica gel, eluting with hexane-dichloromethane (1:1), gave recovered syn-ester 12b ($0.52 \mathrm{~g}, 29 \%$) and the alcohol syn- 16 b ($1.15 \mathrm{~g}, 91 \%$ based on recovered starting material) as an oil $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane, $2.5: 1) 0.47$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3650-3300(\mathrm{OH})$ and $1600(\mathrm{PhS})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.73-7.10(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSPh}), 2.66$ ($1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{C} H \mathrm{Me}), 2.62-2.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.69-1.57(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.43-1.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Me}\right), 1.35,1.23(6 \mathrm{H}$, $2 \mathrm{~s}, \mathrm{HOCMe} 2$) $1.27(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}$) and $1.03(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right): \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.3\left(\mathrm{CH}_{2} \mathrm{Me}\right), 14.3(\mathrm{CHMe}), 27.3,27.9$ (HOCMe 2), $29.9\left(\mathrm{CH}_{2}\right), 40.2(\mathrm{CHMe}), 61.2(\mathrm{CHSPh}), 75.1$ $(\mathrm{COH}), 75.4\left[C(\mathrm{SPh})_{2}\right], 125.6,128.1,128.4,128.6,128.8,129.0$, 129.2, 137.3, 137.6 (ArC), 131.6, 132.6 and 138.4 (ArC-S); m / z $358\left(83 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 300$ [63, $\mathrm{MeCH}_{2} \mathrm{C}(\mathrm{SPh})_{2} \mathrm{CHMe}-$ $\left.\mathrm{CH}^{+}\right], 249\left(51, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 232$ (12, $\mathrm{M}^{+}-$ $\mathrm{PhSH}-\mathrm{PhS}-\mathrm{OH}), \quad 191 \quad\left(100, \quad \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\right.$
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$), 181 ($37, \mathrm{Me}_{2} \mathrm{COHCHSPh}$), 163 (25, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 149 (23, MeCH=CSPh), 139 (34, $\mathbf{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}-$ $\mathrm{PhSH}), 123\left(55, \mathrm{PhSCH}_{2}\right)$ and $110(21, \mathrm{PhSH})\left(\right.$ Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 318.1432, \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{OS}_{2}$ requires $\left.M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 318.1419\right)$.
(3RS,4RS)-2,4,6-Trimethyl-3,5,5-tris(phenylthio)heptan-2-ol 16c.-In the same way, the syn-ester $12 \mathrm{c}(0.365 \mathrm{~g}, 0.75 \mathrm{mmol})$ and methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether; $1.2 \mathrm{~cm}^{3}, 1.8$ $\mathrm{mmol})$ in dry ether $\left(8 \mathrm{~cm}^{3}\right)$ gave the alcohol syn- $\mathbf{1 6 c}(0.285 \mathrm{~g}$, 78%) as an oil, R_{F} (dichloromethane-hexane, 2.5:1) 0.52 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3500-3350(\mathrm{OH})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.73-7.13 ($15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $4.41(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{SPh}), 2.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{OH}), 2.84(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHMe}), 2.47(1 \mathrm{H}, 2 \mathrm{q}, J 6.5, \mathrm{CHMe})_{2}\right)$, 1.36, $1.20(6 \mathrm{H}, 2 \mathrm{~d}, J 6.5, \mathrm{CHMe} 2), 1.31,1.21(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOC}-$ $\left.M e_{2}\right)$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.7(\mathrm{CH} M e)$, 18.5, $21.2(\mathrm{CHMe} 2), 26.2,29.0\left(\mathrm{HOCMe}_{2}\right), 35.0\left(\mathrm{CHMe}_{2}\right)$, $42.8(C \mathrm{HMe}), 61.5(\mathrm{CHSPh}), 75.9\left[\mathrm{COH}, C(\mathrm{SPh})_{2}\right], 125.7$, 128.3, 128.4, 128.8, 129.1, 129.3, 131.4, 135.8, 138.2 (ArC), 134.0 and 138.9 (ArC-S); $m / z 372\left(1 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 263$ (33, $\left.\mathbf{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 262\left(33, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}\right), 205$ (15, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right), 153$ (13, $\mathrm{M}^{+}-\mathrm{PhS}-$ $\mathrm{PhSH}-\mathrm{PhSH}), 110(100, \mathrm{PhSH})$ and $109(28, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 372.1571. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 372.1575).
(3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenylthio)octan-2-ol 16d.-In the same way, the syn-ester $12 \mathrm{~d}(0.23 \mathrm{~g}, 0.47 \mathrm{mmol})$ and methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $0.7 \mathrm{~cm}^{3}, 1.05$ $\mathrm{mmol})$ in dry ether ($5 \mathrm{~cm}^{3}$) gave the alcohol syn-16d (0.185 g , 80%) as an oil, identified by its ${ }^{1} \mathrm{H}$ NMR spectrum, R_{F} (dichloromethane-hexane, $2.5: 1$) $0.53 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3500-$ $3300(\mathrm{OH})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.73-7.14(15 \mathrm{H}, \mathrm{m}$, $\mathrm{PhS}), 4.26(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H S \mathrm{Ph}), 2.67(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHMe}), 2.31(1 \mathrm{H}$, br s, OH), 1.82-1.55 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.53-1.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.34,1.22(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe} 2), 1.28(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{CHMe})$ and $0.66\left[3 \mathrm{H}, \mathrm{t}, J 7.1,\left(\mathrm{CH}_{2}\right)_{2} M e\right]$.
(3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenylthio)-oct-7-en-2-ol 12e.-In the same way, the syn-ester $12 \mathrm{e}(0.825 \mathrm{~g}, 1.71 \mathrm{mmol})$ and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether; $2.7 \mathrm{~cm}^{3}, 3.78$ $\mathrm{mmol})$ in dry ether $\left(10 \mathrm{~cm}^{3}\right)$ gave the alcohol syn- $\mathbf{1 6 e}(0.350 \mathrm{~g}$, 42%) as an oil, R_{F} [dichloromethane-hexane (2.5:1)] 0.52 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500-3300(\mathrm{OH})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.73-7.13(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.11-6.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}_{2}\right), 5.07-$ $5.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSPh}), 2.63(1 \mathrm{H}, \mathrm{q}, J 6.8$, $\mathrm{CHMe}), 2.58(1 \mathrm{H}$, br s, OH$), 2.43-2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{CH}=\mathrm{CH}_{2}\right)$, $1.34,1.22\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe}_{2}\right)$ and $1.31(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.3(\mathrm{CHMe}), 27.4,27.8\left(\mathrm{HOCMe}_{2}\right), 41.1$ (CHMe), $41.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 61.3(\mathrm{CHSPh}), 75.1(\mathrm{COH}), 75.3$ $\left[C(\mathrm{SPh})_{2}\right], 117.9\left(\mathrm{HC}=\mathrm{CH}_{2}\right), 125.7,128.3,128.5,128.9,129.2$, $129.4,133.6,137.4,137.7\left(\mathrm{ArC}, \mathrm{HC}=\mathrm{CH}_{2}\right), 131.5,132.2$ and 138.3 (ArC-S) m/z $370\left(5 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 261\left(35, \mathrm{M}^{+}-\right.$ PhSH - PhS), 189 (20, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSCHCMe}{ }_{2} \mathrm{OH}\right)$, 181 (26, $\left.\mathrm{Me}_{2} \mathrm{COHCHSPh}\right), 123\left(26, \mathrm{PhSCH}_{2}\right), 110(100, \mathrm{PhSH})$ and 109 (32, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, \quad$ 370.1443. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 370.1419$).
(3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenylthio)nonan-2-ol 16f.-In the same way, the syn-ester $12 \mathrm{f}(0.9 \mathrm{~g}, 1.8 \mathrm{mmol})$ and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $3 \mathrm{~cm}^{3}, 4.2 \mathrm{mmol}$) in dry ether ($20 \mathrm{~cm}^{3}$) gave recovered syn-ester ($0.350 \mathrm{~g}, 39 \%$); and the alcohol syn- $\mathbf{1 6 f}(0.45 \mathrm{~g}, 82 \%$ based on recovered starting material) as an oil R_{F} [dichloromethane-hexane (2.5:1)] 0.54; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3660-3200(\mathrm{OH})$ and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.72-7.13(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSPh}), 1.44(1 \mathrm{H}, \mathrm{q}, J$ 6.9, CHMe), 2.61-2.50 (1 H, br s, OH), 1.70-1.37 [2 H, m, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 1.34,1.21(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe} 2), 1.34-1.21(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.27(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}), 1.03-0.95(2 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.73\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 8.8$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 9.4(\mathrm{CHMe}), 17.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 21.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 22.2$, $22.8(\mathrm{HOCMe} 2), 32.0\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 35.9(\mathrm{CHMe}), 56.3$ $(C \mathrm{HSPh}), 69.9(\mathrm{COH}), 70.1\left[C(\mathrm{SPh})_{2}\right], 120.6,123.1,123.4$, $123.6,123.8,123.9,124.1,132.1,132.5$ (ArC), 126.7, 127.7 and 133.3 (ArC-S); m/z 386 ($3 \%, \mathrm{M}^{+}-\mathrm{PhSH}$), 277 (8, $\mathrm{M}^{+}-$ $\mathrm{PhSH}-\mathrm{PhS}$), 219 (30, $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$), 181 (10, $\left.\mathrm{Me}_{2} \mathrm{COHCHSPh}\right), 163$ (20, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}\right), 123$ (37, $\left.\mathrm{PhSCH}_{2}\right), 110(100, \mathrm{PhSH})$ and $109(32, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 386.1761. $\quad \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 386.1713).
(3RS,4RS)-2,4-Dimethyl-7-phenyl-3,5,5-tris(phenylthio)-heptan-2-ol 16g.-In the same way, the syn-ester $\mathbf{1 2 g}(3.26$ $\mathrm{g}, 6 \mathrm{mmol})$ and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $\left.10 \mathrm{~cm}^{3}, 14 \mathrm{mmol}\right)$ in dry ether ($60 \mathrm{~cm}^{3}$) gave recovered syn-ester $\mathbf{1 2 g}(1.14 \mathrm{~g}, 35 \%)$; and the alcohol syn-16g ($1.30 \mathrm{~g}, 62 \%$) as an oil R_{F} [dichloromethane-hexane (2.5:1)] $0.50 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3660-3240(\mathrm{OH})$ and $1600(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78-6.80(20 \mathrm{H}$, m, PhS and Ph$), 4.32(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{SPh}), 2.96(1 \mathrm{H}, \mathrm{dt}, J 4$ and 13.5 , $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.79(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{C} H \mathrm{Me}), 2.68(1 \mathrm{H}, \mathrm{dt}, J 4.9$ and $\left.13, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.63(1 \mathrm{H}$, br s, OH$), 2.09(1 \mathrm{H}, \mathrm{dt}, J 4.9$ and $\left.14.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.81(1 \mathrm{H}, \mathrm{dt}, J 4$ and 12.7, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)$ and 1.36 and $1.24(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe} 2)$; $\left.\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 14.5(\mathrm{CHMe}), 27.3,28.1(\mathrm{HOCMe})_{2}\right), 30.8\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 38.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 41.1(\mathrm{CHMe}), 61.2(\mathrm{CHSPh}), 74.5$ $(\mathrm{COH}), 75.3\left[\mathrm{C}(\mathrm{SPh})_{2}\right], 125.7,125.8,128.1,128.3,128.5,128.7$, $128.9,129.0,129.1,129.3,137.0(\mathrm{ArC}), 131.8,132.6,138.2$ and 141.3 (ArC-S, $\mathrm{ArC}-\mathrm{C}$) $; m / z 434\left(4 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 417$ (3, M^{+} $-\mathrm{PhSH}-\mathrm{OH}$), 375 [2, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right], 343$ (1, $\left.\mathbf{M}^{+}-\mathrm{PhSH}-\mathrm{PhCH}_{2}\right), 325\left(13, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 307$ (15, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{OH}\right), 267$ (44, $\mathrm{M}^{+}-\mathrm{PhS}-$ $\left.\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right), 215\left(12, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhS}\right), 181$ (19, $\left.\mathrm{Me}_{2} \mathrm{COHCHSPh}\right), 163$ (19, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 157 (22, $\mathrm{M}^{+}-$ $\left.\mathrm{PhS}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right), 143\left(15, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{Ph}-\right.$ $\left.\mathrm{SH}-\mathrm{Me}_{2} \mathrm{COHCHSPh}\right), 123$ (57, PhSCH_{2}), 110 (75, PhSH) and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 434.1721$. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 434.1713$).

2-Methyl-7-phenyl-3,5,5-tris(phenylthio)heptan-2-ol 16h.-In the same way, the syn-ester $12 \mathrm{~h}(0.86 \mathrm{~g}, 1.62 \mathrm{mmol})$ and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether; $2.5 \mathrm{~cm}^{3}, 3.6$ $\mathrm{mmol})$ in dry ether $\left(15 \mathrm{~cm}^{3}\right)$ gave recovered syn-ester $\mathbf{1 2 h}(0.3 \mathrm{~g}$, 35%); and the alcohol syn-16h ($0.33 \mathrm{~g}, 59 \%$) as an oil R_{F} [dichloromethane-hexane (2.5:1)] 0.50; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3640-$ $3200(\mathrm{OH})$ and $1600(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85-6.93(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 3.79(1 \mathrm{H}$, dd, $J 1.7$ and $8.1, \mathrm{CHSPh}), 3.14(1 \mathrm{H}, \mathrm{dt}, J 4.8$ and 13, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 2.98(1 \mathrm{H}, \mathrm{dt}, J 4.2$ and 13, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), \quad 2.40-2.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHSPh}, \mathrm{CH}_{\mathrm{A}^{-}}\right.$ $\mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$ and OH$), 1.84\left(1 \mathrm{H}, \mathrm{dt}, J 4.2\right.$ and $\left.13, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 1.11 and $1.05\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe} e_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.5,26.9$ $(\mathrm{HOCMe} 2), 30.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 38.7,39.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CHSPh}\right), 58.0(\mathrm{CHSPh}), 69.6(\mathrm{COH}), 73.9$ [C(SPh) ${ }_{2}$], $125.7,126.1,128.2,128.4,128.7,128.8,129.0,129.4,134.9,136.5$ (ArC), 131.5, 132.4, 137.5 and 141.41 (ArC-S, $\operatorname{ArC-C}$); m/z 420 $\left(2 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 403\left(1, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{OH}\right), 311\left(96, \mathrm{M}^{+}\right.$ $-\mathrm{PhSH}-\mathrm{PhS}$), 293 (19, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{OH}\right)$, 201 (12, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhS}\right), 143$ (24, $\mathrm{M}^{+}-$ $\left.\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{Me}_{2} \mathrm{COHCHSPh}\right), 123\left(55, \mathrm{PhSCH}_{2}\right), 110$ (100, PhSH) and 91 ($91, \mathrm{PhCH}_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 420.1518. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 420.1575$).

Rearrangement of (3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenyl-thio)heptan-2-ol 16b by Method A: Typical Procedure.-The syn-alcohol 16 b ($128 \mathrm{mg}, 0.27 \mathrm{mmol}$) was refluxed in dry dichloromethane ($1.2 \mathrm{~cm}^{3}$) with toluene-p-sulfonic acid (TsOH) $(12 \mathrm{mg}, 0.07 \mathrm{mmol})$ for 15 min . The solution was cooled, poured into saturated aqueous sodium carbonate ($3 \mathrm{~cm}^{3}$) and the
mixture extracted with dichloromethane $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash column chromatography on silica gel eluting with a mixture of hexanedichloromethane (3:1) gave the vinyl sulfide $(Z)-(4 R S, 5 R S)$ -4,6-dimethyl-3,5,6-tris(phenylthio)hept-2-ene 17 b ($67 \mathrm{mg}, 55 \%$), as an oil R_{F} [hexane-dichloromethane (3:1)] 0.46; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1570(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-7.09(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $6.25(1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CH}=\mathrm{CSPh}), 3.82(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{C} H \mathrm{SPh}), 3.26-$ $3.17(1 \mathrm{H}, \mathrm{q}, J 5.9, \mathrm{CHMe}), 1.79(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}=\mathrm{CSPh})$, $1.36(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CHMe})$ and $1.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{PhSCM} e_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.0(\mathrm{CHMe}), \quad 16.3(\mathrm{MeCH}=\mathrm{CSPh}), 27.9,29.4$ ($\mathrm{PhSCMe}{ }_{2}$), $41.0(\mathrm{CHMe}), 55.5(\mathrm{CSPh}), 64.7(\mathrm{CHSPh}), 125.6$, $125.9,128.3,128.4,128.9,130.5,134.2,137.7(\mathrm{Ar} C, \mathrm{Me} C-$ $\mathrm{H}=\mathrm{CSPh}), 132.3,136.2,137.1$ and $138.6(\mathrm{ArC}-\mathrm{S}, \mathrm{MeCH}=\mathrm{CSPh})$: $m / z 450\left(1 \%, \mathbf{M}^{+}\right), 341\left(100, \mathbf{M}^{+}-\mathrm{PhS}\right), 231\left(28, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhS}), 218$ (13, PhSSPh), $189\left(28, \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~S}\right)$, 163 (20, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 151 (45, $\left.\mathrm{Me}_{2} \mathrm{CSPh}\right), 149$ (32, $\left.\mathrm{MeCH}=\mathrm{CSPh}\right)$ and 121 (55, $\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}-\mathrm{PhSH}$) (Found: $\mathrm{M}^{+}, 450.1489$, $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{30} \mathrm{~S}_{3}$ requires $M, 450.1503$).

Rearrangement by Method B: Typical Procedure.-Thionyl chloride ($0.090 \mathrm{~cm}^{3}$) was added to an ice cooled soluion of the syn-alcohol 12b ($432 \mathrm{mg}, 0.73 \mathrm{mmol}$) in carbon tetrachloride ($9 \mathrm{~cm}^{3}$) and triethylamine ($0.6 \mathrm{~cm}^{3}$) kept in a foil-wrapped flask. After 1 min , the mixture was poured into dilute hydrochloric acid ($15 \mathrm{~cm}^{3}$), extracted with dichloromethane $\left(3 \times 5 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed with water $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The crude product was submitted to flash column chromatography on silica gel, eluting with hexane-dichloromethane (3:1), to give three products: a 1.3:1 mixture of the vinyl sulfides (E) and (Z)-(4RS,5RS)-4,6-dimethyl-3,5,6-tris(phenylthio)hept-2ene 17b ($170 \mathrm{mg}, 52 \%$), as an oil, R_{F} [hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1)] $0.46 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.60-7.03(15 \mathrm{H}, \mathrm{m}$, $\mathrm{PhS}), 6.25(Z), 5.49(E)(1 \mathrm{H}, 2 \mathrm{q}, J 6.6$ and $7, \mathrm{CH}=\mathrm{CSPh}), 3.93$ $(E), 3.23(Z)[1 \mathrm{H}, \mathrm{dq}, J 2.5$ and 7.0 , and q, $J 5.9, \mathrm{C} H \mathrm{Me}), 3.82$ $(Z), 3.75(E)(1 \mathrm{H}, 2 \mathrm{~d}, J 1.6$ and $2.5, \mathrm{C} H \mathrm{SPh}), 1.89(E), 1.79$ $(Z)(3 \mathrm{H}, 2 \mathrm{~d}, J 7$ and $6.6, M e \mathrm{CH}=\mathrm{CSPh}), 1.38(E), 1.23(Z)$, $1.17(E)(6 \mathrm{H}, 3 \mathrm{~s}, \mathrm{PhSCMe} 2)$ and $1.36(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.8(E), 16.0(Z)(\mathrm{CHMe}), 16.3(Z), 18.3(E)$ $(M e \mathrm{CH}=\mathrm{CSPh}), 25.6(E), 27.9(Z), 29.3(E), 29.5(Z)$ (PhSCMe) , $37.0(E), 41.0$ (Z) (CHMe), 55.5 (Z), $56.9(E)$ $(C S P h), 61.6(E), 64.7(Z)(C H S P h), 125.6,125.9,126.8,127.1$, $128.3,128.5,128.6,128.9,129.2,130.5,131.9,134.2,137.7$, $137.8(\mathrm{ArC}, \mathrm{MeC}=C \mathrm{H}), 132.3,135.7,136.2,137.1,138.6$ and 141.5 (ArC-S, CH=CSPh); $m / z 450\left(0.1 \%, \mathrm{M}^{+}\right), 341\left(87, \mathrm{M}^{+}-\right.$ PhS), 232 ($100, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}$), $231\left(67, \mathrm{M}^{+}-\mathrm{PhSH}-\right.$ PhS), 218 (70, PhSSPh), 186 (65, $\left.\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~S}\right), 163$ (20, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 149 (22, $\mathrm{MeCH}=\mathrm{CSPh}$) and 121 (22, $\mathrm{M}^{+}-$ $\mathrm{PhSH}-\mathrm{PhS}-\mathrm{PhSH}$) (Found: M^{+}, 450.1494. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~S}_{3}$ requires $M, 450.1503$); and the alkene 2,4-dimethyl-5,5-bis(phenylthio)hept-2-ene $\mathbf{1 8 b}(62 \mathrm{mg}, 25 \%)$ as an oil R_{F} [hexane-dichloromethane (3:1)] $0.58 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.60-7.21(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.39(1 \mathrm{H}, \mathrm{qd}, J 1.3$ and 9.7, $\mathrm{CH}=\mathrm{CMe}_{2}$), $2.89(1 \mathrm{H}, \mathrm{dq}, J 9.7$ and $6.7, \mathrm{CHMe}), 1.67$, $1.55\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 1.44,1.43(2 \mathrm{H}, 2 \mathrm{q}, J 7$ and 7.3 , $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH} M e)$ and $0.98(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 17.2(\mathrm{CHMe}), 18.0,26.0$ $\left.(\mathrm{CH}=\mathrm{CMe})_{2}\right), 30.1\left(\mathrm{CH}_{2} \mathrm{Me}\right), 40.5(\mathrm{CHMe}), 75.2\left[\mathrm{C}(\mathrm{SPh})_{2}\right]$, $126.3,127.5,128.3,128.3,128.6,128.7,129.0,137.1,137.2$ $\left(\mathrm{Ar} C, \mathrm{CH}=\mathrm{CMe}_{2}\right), 131.8\left(\mathrm{CH}=\mathrm{CMe}_{2}\right), 132.7$ and $132.8(\mathrm{ArC}-$ S) $; m / z 259\left(1 \%, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 232\left(33, \mathrm{M}^{+}-\mathrm{PhS}\right), 110(100$, $\mathrm{PhSH})$ and 109 (98, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}, 259.0623$. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{11}, 259.0612$).

Rearrangement of (3RS,4RS)-2,4,6-Trimethyl-3,5,5-tris-(phenylthio)heptan-2-ol 16c.-By method A, the syn-alcohol 16c
($42 \mathrm{mg}, 0.087 \mathrm{mmol}$) and $\mathrm{TsOH}(4 \mathrm{mg}, 0.023 \mathrm{mmol})$ in dichloromethane $\left(0.4 \mathrm{~cm}^{3}\right)$ gave the vinyl sulfide (4RS,5RS)-2,4,6-trimethyl-3,5,6-tris(phenylthio)hept-2-ene 17 c (24 mg, 60%), as an oil R_{F} [hexane-dichloromethane (3:1)] 0.41 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1550(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49-7.00(15 \mathrm{H}, \mathrm{m}$, $\mathrm{PhS}), 3.96(1 \mathrm{H}, \mathrm{dq}, J 3.4$ and $6.9, \mathrm{CHMe}) 3.61(1 \mathrm{H}, \mathrm{d}, J 3.4$, CHSPh), 2.08, $1.90\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{C}=\mathrm{CCMe}_{2}\right), 1.38,1.23(6 \mathrm{H}, 2 \mathrm{~s}$, PhSCMe 2) and $1.29(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}) ; m / z 464\left(1 \%, \mathrm{M}^{+}\right)$, 235 ($100, \mathrm{M}^{+}-\mathrm{PhS}$), $245\left(35, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 218$ (16, PhSH), 203 (48, $\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{6}$), 191 (31, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~S}$), 164 (29, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHPhS}$), 163 ($54, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 151 (35, $\left.\mathrm{Me}_{2} \mathrm{CSPh}\right), 149$ (36, $\left.\mathrm{MeCH}=\mathrm{CSPh}\right), 135\left(36, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhS}-\mathrm{PhSH}), 121$ (45, PhSC), 110 (82, PhSH) and 109 (48, PhS) (Found: $\mathrm{M}^{+}, 464.1642 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~S}_{3}$ requires M, 464.1659).

By method B, the syn-alcohol 16c ($64 \mathrm{mg}, 0.013 \mathrm{mmol}$), triethylamine $\left(0.11 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.016 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride ($1.8 \mathrm{~cm}^{3}$) gave, as the only product, the alkene 17 c ($50 \mathrm{mg}, 82 \%$).

Rearrangement of (3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenylthio) octan-2-ol 16d.-By method A, the syn-alcohol 16d (33 mg , 0.068 mmol) and $\mathrm{TsOH}(3 \mathrm{mg}, 0.0017 \mathrm{mmol})$ in dichloromethane $\left(0.3 \mathrm{~cm}^{3}\right)$ gave the vinyl sulfide (Z)-($5 \mathrm{RS}, 6 \mathrm{RS}$)-5,7-dimethyl-4,6,7-tris(phenylthio)oct-2-ene 17d ($20 \mathrm{mg}, 64 \%$), as an oil, R_{F} (carbon tetrachloride) $0.60 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.63-7.10(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.16(1 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{C} H=\mathrm{CSPh}), 3.83(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H S \mathrm{Ph}), 3.20(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHMe}), 2.37$ $\left(1 \mathrm{H}, \mathrm{dq}, J 7\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 2.16(1 \mathrm{H}, \mathrm{dq}, J 7$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 1.36(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}), 1.23,1.22$ $(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{PhSCMe} 2)$ and $0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z} 355$ ($18 \%, \mathrm{M}^{+}-\mathrm{PhS}$), 245 ($\left.50, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}\right), 163$ (27, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 151 (42, $\left.\mathrm{Me}_{2} \mathrm{CSPh}\right) 135$ (27, $\mathrm{M}^{+}-\mathrm{PhSH}-$ $\mathrm{PhS}-\mathrm{PhSH}$), $110(100, \mathrm{PhSH})$ and 109 ($65, \mathrm{PhS}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, \quad 355.1578$. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 355.1548).

By method B, the syn-alcohol 16d ($35 \mathrm{mg}, 0.073 \mathrm{mmol}$), triethylamine $\left(0.060 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.009 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride $\left(1 \mathrm{~cm}^{3}\right)$ gave three products: a $2.5: 1$ mixture of the vinyl sulfides (E)- and (Z)-(5RS,6RS)-5,7-dimethyl-4,6,7-tris(phenylthio)oct-2-ene 17 d ($23 \mathrm{mg}, 68 \%$), as an oil, R_{F} (carbon tetrachloride) $0.60 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-7.03(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.17(Z), 5.40(E)$ $(1 \mathrm{H}, 2 \mathrm{t}, J 7$ and $7.3, \mathrm{CH}=\mathrm{CSPh}), 3.92(E), 3.19(Z)(1 \mathrm{H}, \mathrm{dq}, J 2$ and 7 , and q, $J 7, \mathrm{C} H \mathrm{Me}), 3.83(Z), 3.75(E),(1 \mathrm{H}, \mathrm{s}, \mathrm{d}, J 2$, CHSPh $), 2.38(Z), 2.15(Z)(2 H, 2 \mathrm{dq}, J 7.3,7.4$ and $J 7,7.6$, $\left.\mathrm{CH}_{2} \mathrm{CHCSPh}\right), 1.37(E), 1.36(Z),(3 \mathrm{H}, 2 \mathrm{~d}, J 7, \mathrm{CH} M e), 1.23$ $(Z), 1.22(Z), 1.17(E)(6 \mathrm{H}, 3 \mathrm{~s}, \mathrm{PhSCMe} 2), 0.98(E)$ and 0.91 $(Z)\left(3 \mathrm{H}, 2 \mathrm{t}, J 7.4\right.$ and 7.6, $\left.\mathrm{CH}_{2} M e\right) ; m / z 355\left(100 \%, \mathrm{M}^{+}-\right.$ PhS), 245 (50, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}\right), 163$ (27, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}\right)$, $151\left(45, \mathrm{Me}_{2} \mathrm{CSPh}\right), 110(82, \mathrm{PhSH})$ and $109(39, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 355.1560. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 355.1548).

Rearrangement of (3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenyl-thio)oct-7-en-2-ol 16e.-By method A, the syn-alcohol 16e (171 $\mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathrm{TsOH}(15 \mathrm{mg})$ in dichloromethane (1.5 cm^{3}) gave a complex mixture of products. However, by method B, the syn-alcohol $16 e(131 \mathrm{mg}, 0.25 \mathrm{mmol})$, triethylamine $(0.20$ cm^{3}) and thionyl chloride ($0.035 \mathrm{~cm}^{3}$) in carbon tetrachloride ($3.5 \mathrm{~cm}^{3}$) gave as the only identifiable product the alkene 5,7-dimethyl-4,4-bisphenylthioocta-1,6-diene 18 e ($24 \mathrm{mg}, 25 \%$), as an oil, $R_{\mathrm{F}}\left[\right.$ hexane-dichloromethane (3:1)] $0.53 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1570(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.66-7.18(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.11(1 \mathrm{H}, \mathrm{ddt}$, J 17.1, 10.3 and $\left.6.6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{q}, J 9.7$, $\mathrm{CH}=\mathrm{CMe}_{2}$), $5.06\left(1 \mathrm{H}\right.$, dd, $J 1.8$ and $\left.10.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $4.93\left(1 \mathrm{H}\right.$, dd, $J 1.8$ and $\left.17, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.88(1 \mathrm{H}$, $\mathrm{dq}, J 9.7$ and $6.8, \mathrm{CHMe}), 2.24\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$,
19.68, $1.50\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}=\mathrm{CMe}_{2}\right)$ and $1.16(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.2(\mathrm{CHMe}), 18.2,26.0\left(\mathrm{CH}=\mathrm{CMe}{ }_{2}\right), 41.3(\mathrm{CHMe})$, $41.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 73.0\left[\mathrm{C}(\mathrm{SPh})_{2}\right], 117.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.1$, $127.1,127.4,128.4,128.8,128.9,129.0,134.0,137.1,137.2$ ($\mathrm{ArC}, \mathrm{CH}=\mathrm{CMe}_{2}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $132.2\left(\mathrm{CH}=\mathrm{CMe}_{2}\right.$), 132.4 and 132.5 ($\mathrm{ArC}-\mathrm{S}$); $m / z 271\left(4 \%, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 245$ (48, M ${ }^{+}-\mathrm{PhS}$), $228\left(30, \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}\right), 134\left(28, \mathrm{C}_{10} \mathrm{H}_{14}\right), 119$ $\left(35, \mathrm{C}_{9} \mathrm{H}_{11}\right), 110(100, \mathrm{PhSH})$ and $109(52, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}$, 271.0623. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{11}$, 271.0612).

Rearrangement of (3RS,4RS)-2,4-Dimethyl-3,5,5-tris(phenyl-thio)nonan-2-ol 16f.-By method A, the syn-alcohol 16 f (192 mg , 0.38 mmol) and $\mathrm{TsOH}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dichloromethane $\left(1.7 \mathrm{~cm}^{3}\right)$ gave the vinyl sulfide $(Z)-(6 R S, 7 R S)-6,8$-dimethyl-5,7,8-tris(phenylthio)non-2-ene $17 \mathrm{f}(90 \mathrm{mg}, 49 \%)$, as oil R_{F} [hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)\right] \quad 0.50 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570 \quad(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.48-7.07(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.19(1 \mathrm{H}, \mathrm{t}, J 6.6$, $\mathrm{CH}=\mathrm{CSPh}), 3.84(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C} H S P h), 3.22(1 \mathrm{H}, \mathrm{q}, J 6.9$, $\mathrm{CHMe}), 2.35\left(1 \mathrm{H}, \mathrm{dq}, J 7.6\right.$ and $\left.15, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 2.13$ ($1 \mathrm{H}, \mathrm{dq}, J 6.6$ and $\left.15, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 1.57-1.25(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H_{2} \mathrm{Me}\right), 1.36(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}), 1.22,1.21(6 \mathrm{H}, 2 \mathrm{~s}$, $\mathrm{PhSCMe} 2)$ and $0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} M e\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.5(\mathrm{CHMe}), 22.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 27.8,29.5(\mathrm{PhSCMe} 2)$, $32.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 40.6(\mathrm{CHMe}), 51.8(\mathrm{CSPh}), 64.4(\mathrm{CHSPh})$, $125.6,125.8,128.4,128.6,128.6,128.9,130.1,137.7$ (ArC, $\mathrm{MeCH}=\mathrm{CSPh}), 132.4,136.3,136.3,138.7$ and 139.7 (ArC-S, $\mathrm{MeCH}=\mathrm{CSPh}) ; m / z 478\left(0.3 \%, \mathrm{M}^{+}\right), 369\left(61, \mathrm{M}^{+}-\mathrm{PhS}\right), 259$ (59, $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}$), 217 (22, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~S}$), 205 (33, $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~S}\right), 163\left(72, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}\right), 151$ ($100, \mathrm{Me}_{2} \mathrm{CSPh}$), 123 (35, $\left.\mathrm{PhSCH}_{2}\right), 121(28, \mathrm{PhSC}), 110(65, \mathrm{PhSH}), 109(54, \mathrm{PhS})$ and $107\left(70, \mathrm{C}_{8} \mathrm{H}_{18}\right)$ (Found: $\mathrm{M}^{+}, 478.1818 . \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~S}_{3}$ requires M, 478.1815).

By method B, the syn-alcohol 16 f ($225 \mathrm{mg}, 0.45 \mathrm{mmol}$), triethylamine $\left(0.37 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.056 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride $\left(5.6 \mathrm{~cm}^{3}\right)$ gave a $1.8: 1$ mixture of the vinyl sulfides (E) - and (Z)-(6RS,7RS)-6,8-dimethyl-5,7,8-tris(phenyl-thio)non-2-ene 17 f ($105 \mathrm{mg}, 49 \%$), as an oil, R_{F} [hexanedichloromethane (3:1)] 0.50; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1570$ (C=C); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.60-7.04(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.18(Z), 5.45(E)(1 \mathrm{H}, 2 \mathrm{t}$, $J 6.6$ and $7.3, \mathrm{C} H=\mathrm{CSPh}), 3.93(E), 3.22(Z)(1 \mathrm{H}, \mathrm{dq}, J 2.4$ and 7.3 , and q, $J 7, \mathrm{CHMe}), 3.84(Z), 3.75(E)(1 \mathrm{H}, 2 \mathrm{~d}, J 1.5$ and 2.4 , $\mathrm{CHSPh}), 2.38-2.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CSPh}\right), 1.47-1.12(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.38(E), 1.36(Z)(3 \mathrm{H}, 2 \mathrm{~d}, J 7, \mathrm{CH} M e), 1.22(Z), 1.21$ $(Z), 1.18(E)\left(6 \mathrm{H}, 3 \mathrm{~s}, \mathrm{PhSCMe}{ }_{2}\right)$ and $0.89(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(Z), 15.3(E)\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.5(Z), 18.6$ (E) (CHMe), $22.5(Z), 22.7(E)\left(C H_{2} \mathrm{Me}\right), 25.6(E), 27.7(Z)$, $29.5(E), 29.5(Z)(\mathrm{PhSCMe} 2), 31.1(E), 32.4(Z)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $37.3(E), 40.6(Z)(C H M e), 55.7(Z), 57.0(E)(C S P h), 61.7(E)$, $64.4(Z)(C H S P h), 125.5,125.6,125.8,126.7,128.0,128.3,128.3$, $128.5,128.6,128.7,128.9,129.2,130.1,130.2,131.6,133.8,136.3$, 136.9, 137.1, 137.6, 137.7, 139.6 ($\mathrm{ArC}, \mathrm{MeCH}=\mathrm{CSPh}$), 131.9, $132.3,136.1,136.2,138.6,138.7$ and $140.5(\mathrm{ArC}-\mathrm{S}, \mathrm{MeCH}=$ CSPh) ; $m / z 478\left(1 \%, \mathrm{M}^{+}\right), 369\left(100, \mathrm{M}^{+}-\mathrm{PhS}\right), 327$ (13, $\mathbf{M}^{+}-\mathrm{Me}_{2} \mathrm{CSPh}$), $259\left(35, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}\right), 205$ (28, $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~S}\right), 163\left(50, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}\right), 151\left(76, \mathrm{PhSCMe}_{2}\right), 123(23$, PhSCH_{2}) and 109 (39, PhS) (Found: $\mathrm{M}^{+}, 478.1785 . \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~S}_{3}$ requires $M, 478.1815$); and the alkene 2,4-dimethyl-5,5-bis-(phenylthio)non-2-ene $18 \mathrm{f}\left(45 \mathrm{mg}, 27 \%\right.$), as an oil R_{F} [hexanedichloromethane (3:1)] $0.60 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1570 \quad(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.65-7.18(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.38(1 \mathrm{H}, \mathrm{qd}, J 1.2$ and $9.7, \mathrm{CH}=\mathrm{CMe}_{2}$), $2.89(1 \mathrm{H}, \mathrm{dq}, J 9.7$ and $6.8, \mathrm{CHMe}), 1.67$ and $1.54(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}=\mathrm{CMe} 2), 1.50-1.36\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Me}\right]$, $1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CHMe}), 1.07-1.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} \mathrm{H}_{2} \mathrm{Me}\right)$ and $0.78\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 17.3$ $(\mathrm{CHMe}), \quad 18.1, \quad 26.0 \quad\left(\mathrm{CH}=\mathrm{CMe}_{2}\right), \quad 22.7 \quad\left(\mathrm{CH}_{2} \mathrm{Me}\right), \quad 26.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 37.2\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 41.2(\mathrm{CHMe}), 74.76$ $\left[C(\mathrm{SPh})_{2}\right], 126.4,127.2,127.5,128.3,128.7,128.8,129.1,137.0$,
$137.1\left(\mathrm{ArC}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 131.9\left(\mathrm{CH}=\mathrm{CMe}_{2}\right), 132.8$ and 133.0 (ArC-S); $m / z 369\left(3.5 \%, \mathrm{M}^{+}\right), 287\left(10, \mathrm{C}_{6} \mathrm{H}_{10}\right), 261$ (100 , $\left.\mathbf{M}^{+}-\mathrm{PhS}\right), 151\left(35, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}\right), 135\left(16, \mathrm{M}^{+}-\right.$ $\mathrm{PhS}-\mathrm{PhSH}-\mathrm{Me}), 109(53, \mathrm{PhS})$ and $95\left(67, \mathrm{C}_{7} \mathrm{H}_{11}\right)$ (Found: $\mathrm{M}^{+}, 369.1699 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~S}_{2}$ requires $M, 369.1704$).

Rearrangement of (3RS,4RS)-2,4-Dimethyl-7-phenyl-3,5,5-tris(phenylthio)heptan-2-ol 16g.-By method A, the syn-alcohol $16 \mathrm{~g}(366 \mathrm{mg}, 0.67 \mathrm{mmol})$ and $\mathrm{TsOH}(30 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dichloromethane $\left(1.7 \mathrm{~cm}^{3}\right)$ gave the vinyl sulfide $(Z)-(4 R S$,$5 R S$)-4,6-dimethyl-1-phenyl-3,5,6-tris(phenylthio)hept-2-ene $17 \mathrm{~g}(166 \mathrm{mg}, 47 \%)$, as oil R_{F} [hexane-dichloromethane (3:1)] $0.41 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1575(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.65-7.11(20 \mathrm{H}, \mathrm{m}$, $\mathrm{PhS}, \mathrm{Ph}), 6.34(1 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}=\mathrm{CSPh}), 3.88(1 \mathrm{H}, \mathrm{d}, J 1.4$, CHSPh), $3.81\left(1 \mathrm{H}, \mathrm{dd}, J 8\right.$ and $\left.15.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 3.43(1$ H , dd, $J 6.2$ and $\left.15.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 3.29(1 \mathrm{H}, \mathrm{q}, J 6.9$, $\mathrm{CHMe}), 1.36(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} M e), 1.23$ and $1.21(6 \mathrm{H}, 2 \mathrm{~s}$, $\mathrm{PhSCMe} 2) ; ~ \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.5(\mathrm{CHMe}), 27.6,29.5(\mathrm{PhSCMe} 2)$, $36.6\left(\mathrm{PhCH}_{2}\right), 40.7(\mathrm{CHMe}), 55.8(\mathrm{CSPh}), 64.0(\mathrm{CHSPh}), 125.8$, $125.9,126.0,127.2,128.4,128.5,128.7,128.9,129.0,130.3,132.4$, $137.7(\mathrm{ArC}, \mathrm{MeCH}=\mathrm{CSPh}), 130.0,135.9,137.5,138.6$ and 140.3 ($\mathrm{ArC-S}$ and $\mathrm{MeCH}=C \mathrm{SPh}$); m/z $526\left(0.1 \%, \mathrm{M}^{+}\right.$), 417 (47, $\mathbf{M}^{+}-\mathrm{PhS}$), 375 (18, $\mathbf{M}^{+}-\mathrm{Me}_{2} \mathrm{CSPh}$), 307 (30, $\mathbf{M}^{+}-$ $\mathrm{PhS}-\mathrm{PhSH}), 265\left(13, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~S}\right), 217\left(19, \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~S}, 163\right.$ (34, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CPhS}$), 151 (76, $\left.\mathrm{Me}_{2} \mathrm{CSPh}\right), 143\left(45, \mathrm{C}_{11} \mathrm{H}_{11}\right), 109(26$, $\mathrm{PhS})$ and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 526.1832 . \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~S}_{3}$ requires $M, 526.1815$).

By method B, the syn-alcohol $\mathbf{1 6 g}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$, triethylamine $\left(0.15 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.023 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride (2.3 ml) gave a $2.2: 1$ mixture of the vinyl sulfides (E) - and (Z)-($4 R S, 5 R S$)-4,6-dimethyl-1-phenyl-3,5,6-tris(phenylthio)hept-2-ene $17 \mathrm{~g}\left(66 \mathrm{mg}, 52 \%\right.$), as an oil, R_{F} [hexane-dichloromethane (3:1)] $0.41 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1575$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.56-7.10(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 6.38(Z)$, $5.59(E)(1 \mathrm{H}, 2 \mathrm{t}, J 6.8$ and $7.5, \mathrm{C} H=\mathrm{CSPh}), 4.10(E), 3.32(Z)(1$ $\mathrm{H}, \mathrm{dq}, J 2.2$ and 7 , and q, $J 6.8, \mathrm{C} H \mathrm{Me}), 3.92(Z), 3.85(E)(1 \mathrm{H}, 2$ d, $J 1.4$ and $2.2, \mathrm{C} H S P h), 3.90-3.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right)$, $3.69(E), 3.43(Z)(1 \mathrm{H}, 2 \mathrm{dd}, J 7.2$ and 16.3 and $J 6.2$ and 16.3, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 1.43(E), 1.36(Z)(3 \mathrm{H}, 2 \mathrm{~d}, J 7.1$ and 6.9 , $\mathrm{CHMe}), 1.26(E), 1.24(E)$ and $1.23(Z)\left(6 \mathrm{H}, 3 \mathrm{~s}, \mathrm{PhSCMe} e_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.5(Z), 18.5(E)(\mathrm{CHMe}), 25.4(E), 27.6(Z), 29.4$ $(E), 29.5(Z)(\mathrm{PhSCMe} 2), 35.0(E), 36.6(Z)\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 37.3(E)$, $40.7(Z)(C H M e), 55.7(Z), 57.1(E)(C S P h), 61.6(E), 64.0(Z)$ (CHSPh), 125.6, 125.8, 125.9, 127.2, 128.4, 128.5, 128.6, 128.9, $129.0,129.2,129.5,130.0,132.5,136.8,137.7,137.8(\mathrm{ArC}$, $\mathrm{MeCH}=\mathrm{CSPh}), 131.8,132.3,135.1,135.8,137.5,138.5,138.6$, $140.2,140.4$ and 142.6 ($\mathrm{ArC}-\mathrm{S}, \mathrm{MeCH}=C \mathrm{SPh}$); $m / z 526(0.3 \%$, \mathbf{M}^{+}), 417 ($70, \mathbf{M}^{+}-\mathrm{PhS}$), 375 ($\left.11, \mathbf{M}^{+}-\mathrm{Me}_{2} \mathrm{CSPh}\right), 309$ (39, $\left.\mathbf{M}^{+}+1-\mathrm{PhS}-\mathrm{PhS}\right), 252\left(13, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}\right), 151$ (17, $\left.\mathrm{Me}_{2} \mathrm{CSPh}\right), 143\left(39, \mathrm{C}_{11} \mathrm{H}_{11}\right), 109(26, \mathrm{PhS})$ and $91(100$, PhCH_{2}) (Found: \mathbf{M}^{+}, 526.1840. $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~S}_{3}$ requires M, 526.1815) and the alkene 2,4-dimethyl-7-phenyl-5,5-bis(phenyl-thio)non-2-ene $\mathbf{1 8 g}\left(145 \mathrm{mg}, 34 \%\right.$), as an oil R_{F} [hexane$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)\right] 0.53 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1575(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.70-6.83(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.41(1 \mathrm{H}, \mathrm{qd}, J 1.3$ and 9.6 , $\mathrm{CH}=\mathrm{CMe}_{2}$), $3.00(1 \mathrm{H}, \mathrm{dq}, J 9.6$ and $6.7, \mathrm{CHMe}), 2.85-2.78(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.88-1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.69,1.58$ $(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}=\mathrm{CMe} 2)$ and $1.23(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $17.4(\mathrm{CHMe}), 18.0,25.9(\mathrm{CH}=\mathrm{CMe} 2), 30.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 39.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 41.5(\mathrm{CHMe}), 73.8\left[C(\mathrm{SPh})_{2}\right], 125.7,126.1$, $128.2,128.4,128.8,136.7\left(\mathrm{ArC}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 132.1\left(\mathrm{CH}=\mathrm{CMe}_{2}\right)$, 132.6, 132.7 and 141.7 ($\mathrm{ArC-S}, \mathrm{ArC-C}$); $m / z 418\left(0.5 \%, \mathrm{M}^{+}\right), 417$ (1.3, $\mathbf{M}^{+}-1$), $335\left(1, \mathbf{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 309\left(43, \mathrm{M}^{+}-\mathrm{PhS}\right), 251$ $\left(22, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}\right) 143\left(43, \mathrm{C}_{11} \mathrm{H}_{11}\right), 109(19, \mathrm{PhS})$ and $91(100$, PhCH_{2}) (Found: $\mathrm{M}^{+}, 418.1772 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~S}_{2}$ requires M, 418.1772).

A portion of this $2.2: 1$ mixture of the (E) and (Z) vinyl sulfides $\mathbf{1 7 g}$ ($55 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in dichloro-
methane ($0.5 \mathrm{~cm}^{3}$), and $\mathrm{TsOH}(4.4 \mathrm{mg})$ was added to the solution. The mixture was then refluxed for 15 min after which work-up gave the vinyl sulfide (Z)-(4RS,5RS)-4,6-dimethyl-1-phenyl-3,5,6-tris(phenylthio)hept-2-ene $\mathbf{1 7 g}(39 \mathrm{mg}, 71 \%$) as the only reaction product.

Rearrangement of 2-Methyl-7-phenyl-3,5,5-tris(phenylthio)-heptan-2-ol 16h.-By method A, the syn-alcohol 16g (134 $\mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{TsOH}(12 \mathrm{mg}, 0.069 \mathrm{mmol})$ in dichloromethane ($1.2 \mathrm{~cm}^{3}$) gave a 2.8:1 mixture of the vinyl sulfides (Z) and (E)-6-methyl-1-phenyl-3,5,6-tris(phenylthio)hept-2-ene $\mathbf{1 7 h}(61 \mathrm{mg}, 47 \%)$, as an oil, R_{F} [hexane-dichloromethane (2:1)] 0.35; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1575(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.46-7.07$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}, \mathrm{Ph}), 6.31(Z), 6.19(E),(1 \mathrm{H}, 2 \mathrm{t}, J 7.3$ and 7 , $\mathrm{C} H=\mathrm{CSPh}), 3.90-3.62\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}, \mathrm{CSPhCH}_{2} \mathrm{CSPh}\right), 3.40$ $(Z), 3.14(E)\left(1 \mathrm{H}, 2 \mathrm{~d}, J 14.5\right.$ and $\left.14.3, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right)$, $2.96(E), 2.47(Z)(1 \mathrm{H}, 2$ dd, $J 11.5$ and 14.3 and $J 11.5$ and $\left.14.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 1.22$ and $1.21\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{PhSCMe} e_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.2(Z), 25.4(E), 29.1(Z), 29.2(E)(\mathrm{PhSCMe})$), $33.2(E), 40.3$ (Z) ($\left.\mathrm{CSPhCH}_{2} \mathrm{CSPh}\right), 35.8(E), 36.5(Z)$ $\left(\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CSPh}\right), 54.7(Z), 54.9(E)\left(\mathrm{PhSCMe}_{2}\right), 58.7(E)$, 59.9 (Z) (CHSPh), 128.7, 128.8, 129.0, 130.1, 130.3, 130.6, 137.6, 138.5, 139.9, 140.1 ($\mathrm{ArC}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CSPh}$), 131.0, 131.9, 132.4, 135.1, 135.2, 138.1 and 139.9 (ArC-S, ArC-C, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CSPh}$); $m / z 403$ ($1.5 \%, \mathrm{M}^{+}-\mathrm{PhSH}$), 293 (85 , $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}\right), 203\left(62, \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{SPh}\right), 110(100, \mathrm{PhSH})$, 109 (50, PhS) and 91 ($95, \mathrm{PhCH}_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 403.1576. $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$ requires 403.1548); and a 1.7 :1 mixture of the vinyl sulfides (Z)- and (E)-6-methyl-1-phenyl-3,5,6-tris(phenylthio)hept-3-ene 19 h ($16 \mathrm{mg}, 12 \%$), as an oil, R_{F} [hexane $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)\right] 0.32 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1575 \quad(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.66:6.75 ($\left.20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}, \mathrm{Ph}\right), 5.87(Z), 5.85(E)(1$ $\mathrm{H}, 2 \mathrm{~d}, J 10.3$ and $11.2, \mathrm{C} H=\mathrm{CSPh}), 4.57(Z), 3.98(E)(1 \mathrm{H}, 2 \mathrm{~d}$, $J 10.3$ and 11.2, CHSPh), $2.61(Z), 2.46(E), 2.44(Z)(2 \mathrm{H}, 3 \mathrm{t}$, $\left.J 7.5,12.1,12.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.30(Z), 2.10(E), 1.97(Z)(2 \mathrm{H}$, t , and $2 \mathrm{dt}, J 7.5, J 5$ and 12.1, $J 5$ and 12.1, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.30$ and $1.26(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{PhSCMe} 2) ; m / z 512\left(0.1 \%, \mathrm{M}^{+}\right), 403\left(48, \mathrm{M}^{+}\right.$ $-\mathrm{PhSH}), 223$ (41, $\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}$), 203 (62, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{SPh}$) and 91 ($100, \mathrm{PhCH}_{2}$) (Found: M^{+}, 512.1717. $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~S}_{3}$ requires $M, 512.1659$).

By method B, the syn-alcohol $\mathbf{1 6 h}(190 \mathrm{mg}, 0.36 \mathrm{mmol})$, triethylamine ($0.295 \mathrm{~cm}^{3}$) and thionyl chloride $\left(0.045 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride ($4.5 \mathrm{~cm}^{3}$) gave a $2.7: 1$ mixture of the vinyl sulfides (Z) - and (E)-6-methyl-1-phenyl-3,5,6-tris(phenylthio)-hept-2-ene $17 \mathrm{~h}(97 \mathrm{mg}, 53 \%)$ and a $1.8: 1$ mixture of the vinyl sulfides (Z)- and (E)-6-methyl-1-phenyl-3,5,6-tris(phenylthio)-hept-3-ene 19 h ($13 \mathrm{mg}, 8 \%$).

Methyl (2RS,3RS)-2,3,5-Trimethyl-4,4-bis(phenylthio)-

hexanoate 24c.-Butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $4.3 \mathrm{~cm}^{3}, 6.9 \mathrm{mmol}$) was added to a stirred solution of 2-methyl-1,1-bis(phenylthio)propane $9 \mathrm{c}(1.58 \mathrm{~g}, 5.76 \mathrm{mmol})$ in dry THF ($60 \mathrm{~cm}^{3}$) and TMEDA ($0.9 \mathrm{~cm}^{3}, 6.45 \mathrm{mmol}$) under argon at $0^{\circ} \mathrm{C}$. After 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and methyl crotonate ($0.52 \mathrm{~g}, 5.2 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) was added dropwise to the mixture which was then stirred at this temperature for 1 h . Subsequent methylation of the enolate was accomplished by addition of methyl iodide $\left(2.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in THF; $6 \mathrm{~cm}^{3}, 16.5 \mathrm{mmol}$) whilst the mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and then 2 h at room temperature. The reaction was then quenched by addition of saturated aqueous ammonium chloride $\left(20 \mathrm{~cm}^{3}\right)$ to the mixture which was then extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness to give an oil that was purified by flash column chromatography on silica gel, eluting with $1: 1$ hexane-dichloromethane, to give the ester syn24c ($1.1 \mathrm{~g}, 51 \%$) as an oil, R_{F} [hexane-dichloromethane ($1: 1$)] $0.45 ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$:
$7.74-7.23(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.50(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 3$ and $\left.7.3, \mathrm{CHCO}_{2} \mathrm{Me}\right), 2.91(1 \mathrm{H}, \mathrm{dq}, J 3$ and $7.1, \mathrm{CHMe}), 2.41$ $\left(1 \mathrm{H}, 2 \mathrm{q}, J 6.6, \mathrm{C} H \mathrm{Me}_{2}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{MeCHCO}_{2} \mathrm{Me}\right)$, $1.14,1.10\left(6 \mathrm{H}, 2 \mathrm{~d}, J 6.6, \mathrm{CH} M e_{2}\right)$ and $1.05(3 \mathrm{H}, \mathrm{d}, J 7.1$, $\mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.9(\mathrm{MeCHCO} 2 \mathrm{Me}), 14.5$ (CHMe), 19.4, $20.30(\mathrm{CHMe} 2), 37.3$ (CHMe_{2}), $40.7\left(\mathrm{MeCHCO}_{2} \mathrm{Me}\right), 41.92$ (CHMe), $51.7\left(\mathrm{CO}_{2} \mathrm{Me}\right), 79.1$ [C(SPh) ${ }_{2}$], 128.3, 128.5, 128.7, 128.9, 129.0, 135.9, 137.1 (ArC), 132.8, 133.8 ($\mathrm{ArC}-\mathrm{S}$) and 177.5 $\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z 278\left(11 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 247\left(15, \mathrm{M}^{+}-\mathrm{PhS}-\right.$ OMe), 169 (55, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 110(100, \mathrm{PhSH})$ and 109 (53, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 278.1328 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 278.1335$).

Methyl (2RS,3RS)-2,3-Dimethyl-4,4-bis(phenylthio)-

heptanoate 24d.-In the same way, 1,1 -bis-phenylthiobutane 9 d ($150 \mathrm{mg}, 0.64 \mathrm{mmol}$), TMEDA ($0.085 \mathrm{~cm}^{3}, 0.61 \mathrm{mmol}$), butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.48 \mathrm{~cm}^{3}, 0.77$ mmol) in dry THF ($6 \mathrm{~cm}^{3}$), methyl crotonate ($49 \mathrm{mg}, 0.49$ mmol) in dry THF ($0.5 \mathrm{~cm}^{3}$) and methyl iodide ($2.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $0.6 \mathrm{~cm}^{3}, 1.56 \mathrm{mmol}$) gave the ester syn-24d (95 $\mathrm{mg}, 44 \%$) as an oil, R_{F} [hexane-dichloromethane (1:1)] 0.28; $\nu_{\text {max }} / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1580(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.60-7.19$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.32(1 \mathrm{H}, \mathrm{dq}, J 2.1$ and 7.2 , $\mathrm{CHCO} 2 \mathrm{Me}), 2.70(1 \mathrm{H}, \mathrm{dq}, J 2.1$ and 7.1, CHMe), 1.55-1.45 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.41(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{MeCHCO} 2 \mathrm{Me}), 1.39-$ $1.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.11(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHMe})$ and $0.69(3 \mathrm{H}$, $\left.\mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{Me}\right) ; m / z 279$ ($21 \%, \mathrm{M}^{+}-\mathrm{PhS}$), 247 ($35, \mathrm{M}^{+}-$ $\mathrm{PhS}-\mathrm{OMe}$), 219 ($47, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$), 177 (27, $\left.\mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 169\left(100, \mathrm{M}^{+}-\mathrm{PhS}-\right.$ $\mathrm{PhSH}), 130\left(55, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\right), 110(97, \mathrm{PhSH}$) and 109 (80, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 279.1414 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}$ requires M $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 279.1413$).
(3RS,4RS)-2,3,4,5-Tetramethyl-5,5-bis(phenylthio)heptan-2ol 25c.-By the method described for 16b, the syn-ester 24c (155 $\mathrm{mg}, 0.38 \mathrm{mmol}$) and methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether; $0.6 \mathrm{~cm}^{3}, 0.9 \mathrm{mmol}$) in dry ether ($5 \mathrm{~cm}^{3}$) gave the alcohol syn-25c ($110 \mathrm{mg}, 71 \%$) as an oil R_{F} [dichloromethane-hexane (3:1)] 0.43; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3600-3300(\mathrm{OH})$ and $1580(\mathrm{PhS})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68-7.14(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 2.77[1 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{MeC} H \mathrm{C}(\mathrm{SPh})_{2}\right], 2.72(1 \mathrm{H}$, br s, OH$), 2.64(1 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{MeCHCOH}], 2.45\left(1 \mathrm{H}, 2 \mathrm{q}, J 6.6, \mathrm{C} H \mathrm{Me}_{2}\right) 1.31,1.06(6 \mathrm{H}, 2 \mathrm{~s}$, HOCMe $)_{2}$, 1.19, 1.17 ($6 \mathrm{H}, 2 \mathrm{~d}, J 6.6, \mathrm{CH} M e_{2}$), 1.14 ($3 \mathrm{H}, \mathrm{d}$, $J 7, M e \mathrm{CHCOH})$ and $0.92\left[3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right] ; m / z$ $168\left(11 \%, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}\right), 153\left(15, \mathrm{M}^{+}-\mathrm{PhSH}-\right.$ $\mathrm{PhSH}-\mathrm{Me}), 110(100, \mathrm{PhSH}), 109$ (23, PhS) and 99 (24, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~S}_{2}$, 168.1515. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ requires $M-\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~S}_{2}, 168.1509$).
(3RS,4RS)-2,3,4-Trimethyl-5,5-bis(phenylthio)octan-2-ol 25d. -In the same way, the syn-ester $24 \mathrm{~d}(97 \mathrm{mg}, 0.237 \mathrm{mmol})$ and methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $0.35 \mathrm{~cm}^{3}, 0.52$ $\mathrm{mmol})$ in dry ether $\left(3 \mathrm{~cm}^{3}\right)$ gave the alcohol syn- $25 \mathrm{~d}(83 \mathrm{mg}$, 86%) as an oil R_{F} [dichloromethane-hexane (3:1)] 0.38 ; $v_{\text {max }}$ (film $) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH})$ and $1580(\mathrm{PhS}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.62-7.14(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 2.64\left[1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right]$, $2.41(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{MeC} H \mathrm{COH}), 1.41-0.99\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right.$ and OH], $\left.1.30,1.12(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{HOCMe})_{2}\right), 1.25(3 \mathrm{H}, \mathrm{d}, J 7.1$, $M e \mathrm{CHCOH}), 1.00\left[3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right]$ and $0.64(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{2} \mathrm{Me}$).

Rearrangement of (3RS,4RS)-2,3,4,6-Tetramethyl-5,5-bis-(phenylthio)heptan-2-ol 25c.-By method A, the alcohol syn-25c gave a complex mixture of products. However, by method B, the syn-alcohol $25 \mathrm{c}(45 \mathrm{mg}, 0.11 \mathrm{mmol})$, triethylamine ($0.090 \mathrm{~cm}^{3}$) and thionyl chloride ($0.014 \mathrm{~cm}^{3}$) in carbon tetrachloride (1.5 cm^{3}) gave the alkene (3RS,4RS)-2,3,4,6-tetramethyl-5,5-bis-
(phenylthio)hept-1-ene $\mathbf{2 6 c}\left(36 \mathrm{mg}, 84 \%\right.$), as an oil, R_{F} (carbon tetrachloride) $0.65 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 1570(\mathrm{PhS})$ and 880 $\left(\mathrm{C}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78-7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.73(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}=\mathrm{C}\right), 4.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}=\mathrm{C}\right), 3.01(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{MeCHC}=\mathrm{CH}_{2}\right), 2.52-2.40\left[2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right.$ and $\mathrm{CHMe} \mathrm{C}_{2}$, $1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{CMe}\right), 1.27(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{MeCHC}=\mathrm{CH}_{2}\right), 1.20,1.07\left(6 \mathrm{H}, 2 \mathrm{~d}, J 6.6, \mathrm{CH} M e_{2}\right)$ and 1.02 [3 $\left.\mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CHC}(\mathrm{SPh})_{2}\right] ; m / z 260\left(4 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 151(75$, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}\right), 149\left(80, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}\right), 110(100$, PhSH) and 109 (70, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 260.1598$. $\mathrm{C}_{17} \mathrm{H}_{24}$ S requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 260.1593$).

Rearrangement of (3RS,4RS)-2,3,4-Trimethyl-5,5-bis(phenyl-thio)octan-2-ol 25d.-By method A, the syn alcohol 25d gave a complex mixture of products. However, by method B, the synalcohol $25 \mathrm{~d}(15 \mathrm{mg}, 0.038 \mathrm{mmol})$, triethylamine $\left(0.030 \mathrm{~cm}^{3}\right)$ and thionyl chloride ($0.005 \mathrm{~cm}^{3}$) in carbon tetrachloride $\left(0.5 \mathrm{~cm}^{3}\right)$ gave the alkene ($3 R S, 4 R S$)-2,3,4-trimethyl-5,5-bis(phenylthio)-oct-1-ene $\mathbf{2 6 d}$ ($7 \mathrm{mg}, 48 \%$), as an oil, R_{F} (carbon tetrachloride) $0.66 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1570(\mathrm{PhS})$ and $880\left(\mathrm{C}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.63-7.17 ($10 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $4.72\left(2 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{CH}_{2}=\mathrm{C}\right), 2.94(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{MeCHC}=\mathrm{CH}_{2}\right), 2.25\left(1 \mathrm{H}, \mathrm{dq}, J 2\right.$ and $\left.7, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right]$, $1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{CH} M e\right) 1.64-1.38\left(4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right), 1.32$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me} \mathrm{CHC}=\mathrm{CH}_{2}\right), 1.03\left[3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCHC}(\mathrm{SPh})_{2}\right]$ and $0.67\left[3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right]$.
(2RS,3RS)-3-Methyl-2,4,4-tris(phenylthio)hexan-1-ol 27b. Typical Procedure.-To a stirred solution of the syn-ester 12b ($1.4 \mathrm{~g}, 3.63 \mathrm{mmol}$) in dry THF $\left(36 \mathrm{~cm}^{3}\right)$ kept at $0^{\circ} \mathrm{C}$ under argon, lithium aluminium hydride ($0.32 \mathrm{~g}, 8.42 \mathrm{mmol}$) was added. Stirring was continued at this temperature for 2 h after which the excess of hydride was destroyed by addition of icecold brine. The mixture was filtered through Celite, the filtrate was extracted with ether ($3 \times 15 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. Purification by flash column chromatography on silica gel, eluting with dichloromethane-hexane (3:1), gave the alcohol syn-27b ($1.21 \mathrm{~g}, 92 \%$), as an oil, R_{F} (dichloromethane) 0.23 ; $\nu_{\text {max }}($ film $) / \mathrm{cm}^{1} 3600-3100(\mathrm{OH})$ and $1575(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.71-7.18(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.21(1 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CHSPh}), 3.60(2 \mathrm{H}, \mathrm{d}$, $\left.J 6, \mathrm{CH}_{2} \mathrm{OH}\right), 2.56(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHMe}), 2.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.78\left(1 \mathrm{H}, \mathrm{dq}, J 12.7\right.$ and $\left.7.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.57(1 \mathrm{H}, \mathrm{dq}, J 12.7$ and 7.1, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Me}\right), 1.26(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$ and $1.06(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 9.6\left(\mathrm{CH}_{2} \mathrm{Me}\right), 13.1(\mathrm{CHMe}), 30.5$ $\left(\mathrm{CH}_{2}\right), 41.8$ (CHMe), 54.1 (CHSPh), $65.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 75.4$ $\left[C(\mathrm{SPh})_{2}\right], 125.6,126.9,127.5,127.8,128.2,128.4,128.5,128.7$, 128.0, 129.0, 129.2, 129.4, 131.6, 133.2, 133.9, 136.9, 137.2, 137.4, $137.5(\mathrm{ArC}), 131.8,132.5$ and $135.7(\mathrm{ArC-S}) ; m / z 330$ $\left(5 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 221\left(13, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 135$ (16, $\left.\mathrm{PhSCH}=\mathrm{CH}_{2}\right), 110(100, \mathrm{PhSH})$ and $109(26, \mathrm{PhS})\left(\right.$ Found: M^{+} $-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 330.1107. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 330.1107).
(2RS,3RS)-3-Methyl-2,4,4-tris(phenylthio)heptan-1-ol 27d.In the same way, the $s y n$-ester $\mathbf{1 2 d}(1.4 \mathrm{~g}, 2.90 \mathrm{mmol})$ and lithium aluminium hydride ($0.28 \mathrm{~g}, 7.36 \mathrm{mmol}$) in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ gave the alcohol $\operatorname{syn}-27 \mathrm{~d}\left(1.15 \mathrm{~g}, 87 \%\right.$), m.p. $61-62^{\circ} \mathrm{C}$ (from hexane-light petroleum b.p. $30-40^{\circ} \mathrm{C}$); R_{F} (dichloromethane) $0.24 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.69-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.19(1 \mathrm{H}, \mathrm{dt}, J 1.1$ and $6, \mathrm{CHSPh})$, $3.54\left(2 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}_{2} \mathrm{OH}\right), 2.51(1 \mathrm{H}, \mathrm{dq}, J 1.1$ and $7.1, \mathrm{C} H \mathrm{Me})$, 1.81-1.66 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and OH), 1.52-1.37 $(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.23(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH} M e)$ and $0.69[3 \mathrm{H}, \mathrm{t}, J 6.6$, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right] ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.2\left(\mathrm{CH}_{2} \mathrm{Me}\right), 14.2(\mathrm{CHMe}), 18.1$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 39.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 42.3(\mathrm{CHMe}), 54.2(\mathrm{CHPhS})$, $75.0\left[C(\mathrm{PhS})_{2}\right], 126.9,128.4,128.5,128.7,129.1,131.5,136.6$, $137.0(\mathrm{ArC}), 131.9,132.6$ and $135.8(\mathrm{ArC-S}) ; m / z 344\left(2 \%, \mathrm{M}^{+}\right.$ - PhSH), 235 (15, M^{+}- $\mathrm{PhSH}-\mathrm{PhS}$), 153 (27, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{OS}$),
$135\left(30, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~S}\right), 110(100, \mathrm{PhSH})$ and 109 (32, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OS}, 344.1227 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OS}$, 344.1263).
(2RS,3RS)-3-Methyl-1-phenyl-2,4,4-tris(phenylthio)hexan-1ol 27 g .-In the same way, the syn-ester $12 \mathrm{~g}(2.25 \mathrm{~g}, 4.13 \mathrm{mmol})$ and lithium aluminium hydride ($0.2 \mathrm{~g}, 4.5 \mathrm{mmol}$) in dry THF (40 cm^{3}) gave the alcohol syn- $27 \mathrm{~g}(1.7 \mathrm{~g}, 80 \%)$, as an oil, R_{F} (dichloromethane) $0.28 ; v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3620-3120(\mathrm{OH})$ and $1575(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79-6.73(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 4.26$ $(1 \mathrm{H}, \mathrm{t}, J 6, \mathrm{C} H \mathrm{SPh}), 3.59\left(2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH}_{2} \mathrm{OH}\right), 2.97(1 \mathrm{H}, \mathrm{dt}$, $J 4$ and 13.5, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.79(1 \mathrm{H}, \mathrm{dt}, J 5$ and 12.7, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 2.61(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{C} H \mathrm{Me}), 2.19(1 \mathrm{H}, \mathrm{dt}, J 5$ and 14.7, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$), $2.00-1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\mathrm{OH})$ and $1.32(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$: $13.2(\mathrm{CHMe})$, $30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 42.3(\mathrm{CHMe}), 53.9$ (CHPhS), $65.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 74.3$ [C(PhS) $)_{2}$], 125.7, 126.9, 127.8, 128.0, 128.1, 128.2, 128.5, 128.6, 128.9, 129.0, 129.1, 129.2, 131.2, $131.4,132.9,133.2,136.5,136.6,136.8,137.0(\mathrm{Ar} C), 132.0,132.4$, 135.5 and 142.4 ($\operatorname{ArC} C-\mathrm{S}, \mathrm{ArC}-\mathrm{C}) ; m / z 406\left(0.5 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right)$, 389 ($0.2, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{OH}$), 297 ($30, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}$), $189\left(30, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{PhS}\right), 153\left(35, \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{OS}\right), 135(43$, $\left.\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~S}\right), 100(100, \mathrm{PhSH}), 109$ (33, PhS) and $91\left(41, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 406.1425. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{OS}_{2}$ requires $\mathrm{M}-$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 406.1419$).
(2RS,3RS)- and (2SR,3RS)-3-Methyl-2,4,4-tris(phenylthio)hexanal 28b. Typical Procedure.-DMSO $\left(0.435 \mathrm{~cm}^{3}, 6\right.$ mmol) in dry dichloromethane ($5 \mathrm{~cm}^{3}$) was slowly added to a solution of oxalyl chloride ($0.26 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) in dry dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. Stirring was continued at this temperature for 10 min , followed by dropwise addition of a solution of the syn-alcohol 27b ($1.2 \mathrm{~g}, 2.72 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$). The reaction mixture was stirred for 20 min and triethylamine $\left(1.9 \mathrm{~cm}^{3}, 13.6 \mathrm{mmol}\right)$ was slowly added. Stirring was continued at this temperature for 15 min after which water $\left(13 \mathrm{~cm}^{3}\right)$ was added to the mixture and the cooling bath removed; the mixture was then allowed to warm to room temperature. The organic phase was separated and the aqueous layer re-extracted with dichloromethane. The combined organic extracts were washed successively with dilute hydrochloric acid ($10 \mathrm{~cm}^{3}$), water ($10 \mathrm{~cm}^{3}$), dilute aqueous sodium carbonate $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness to give a crude product. Purification by flash column chromatography on silica eluting with hexanedichloromethane ($1: 1$) gave an 8.1:1 mixture of the aldehydes syn- and anti-28b ($836 \mathrm{mg}, 70 \%$), as an oil, R_{F} [hexanedichloromethane (1:1)] 0.25; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 1700$ (CO) and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (* refers to $\operatorname{syn-28b} ;{ }^{* *}$ refers to anti28b) 9.83**, 9.46* (1 H, $2 \mathrm{~d}, J 3.3$ and 6.2, CHO), 7.63-7.18 (15 $\mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.49^{*}, 4.14^{* *}(1 \mathrm{H}, 2 \mathrm{dd}, J 3.6$ and $6.2, J 5$ and 3.3 , CHSPh), 2.88-2.77 (CHMe), 1.79-1.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), $1.60-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Me}\right), 1.33(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$ and 1.03 ($3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}$); δ_{C} syn-28b $\left(\mathrm{CDCl}_{3}\right) 9.38\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, 14.0 (CHMe), $31.0\left(\mathrm{CH}_{2}\right), 39.1$ (CHMe), 61.0 (CHSPh), 74.1 $\left[C(\mathrm{SPh})_{2}\right], 127.9,128.5,128.6,129.3,129.2,129.3,132.4,137.1$, 137.3, 137.7 (ArC), 131.5 ($\mathrm{ArC-S}$) and 191.6 (CHO); m/z 329 ($16 \%, \mathrm{M}^{+}-\mathrm{PhS}$), 219 ($13, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}$), 151 (42, $\mathrm{PhSCHCHO}), 149\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHSPh}\right), 123\left(23, \mathrm{PhSCH}_{2}\right), 110$ (100, PhSH) and 109 ($62, \mathrm{PhS}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 320.1036. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 329.1029$).
(2RS,3RS)- and (2SR,3RS)-3-Methyl-2,4,4-tris(phenylthio)heptanal 28d.-In the same way, the $s y n$-alcohol 27d ($82 \mathrm{mg}, 0.18 \mathrm{mmol}$), oxalyl chloride ($0.018 \mathrm{~cm}^{3}, 0.21 \mathrm{mmol}$), DMSO ($0.031 \mathrm{~cm}^{3}, 0.44 \mathrm{mmol}$), triethylamine ($0.125 \mathrm{~cm}^{3}, 0.9$ mmol) and water ($1 \mathrm{~cm}^{3}$) in the required amounts of dry dichloromethane gave a $4.5: 1$ mixture of the aldehydes syn- and anti-28d ($55 \mathrm{mg}, 67 \%$), as an oil R_{F} [hexane-dichloromethane
(1:1)] 0.30; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} \quad 1700(\mathrm{CO})$ and $1570(\mathrm{PhS}) ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: [* refers to $\operatorname{syn} \mathbf{- 2 8 d}$; ${ }^{* *}$ refers to anti-28d] $9.80^{* *}$, 9.43* ($1 \mathrm{H}, 2 \mathrm{~d}, J 6.1$ and $3.2, \mathrm{CHO}$), $7.66-7.15(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $4.48^{*}, 4.35^{* *}(1 \mathrm{H}, 2 \mathrm{dd}, J 3.2$ and 4.7 , and $J 2.5$ and $6, \mathrm{C} H \mathrm{SPh})$, $2.81^{*}, 2.75^{* *}(1 \mathrm{H}, 2 \mathrm{dq}, J 4.7$ and 6.8 , and $J 2.5$ and $7.2, \mathrm{CHMe})$ $1.75-1.34\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 1.50^{* *}, 1.30^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 7.2$ and 6.8, CHMe) 0.71^{*} and $0.70^{* *}(3 \mathrm{H}, 2 \mathrm{t}, J 5.8$ and 7, $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 11.8^{* *}$, $13.8^{*}(\mathrm{CHMe})$, 13.7*, 14.1* $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 17.6^{* *}, 17.8^{*}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 39.5^{*}, 46.4^{* *}(C \mathrm{HMe})$, 39.7**, 4.2* $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 58.6**, $60.9^{*}(\mathrm{CHPhS}), 73.1^{* *}$, $73.6^{*}\left[C(\mathrm{PhS})_{2}\right], 127.5,128.5,128.6,128.7,129.2,129.3,129.4$, $132.3,133.4,136.8,137.1,137.2,137.6(\mathrm{Ar} C), 130.5,131.5$, 131.6, 132.2, 132.5, 133.2 ($\mathrm{ArC-S}$), 191.6* and 192.0** (CHO); $m / z 343\left(11 \%, \mathbf{M}^{+}-\mathrm{PhS}\right), 233\left(52, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhS}\right), 123$ ($\left.33, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhS}\right), 110(100, \mathrm{PhSH})$ and 109 (35, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 343.1191. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OS}_{2}$ requires $\left.M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 343.1185\right)$.
(2RS,3RS)- and (2SR,3RS)-3-Methyl-1-phenyl-2,4,4-tris(phenylthio)hexanal 28g.-In the same way, the syn-alcohol $\mathbf{2 7 g}$ ($1.7 \mathrm{~g}, 3.3 \mathrm{mmol}$), oxalyl chloride $\left(0.315 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}\right)$, DMSO ($0.515 \mathrm{~cm}^{3}, 7.25 \mathrm{mmol}$), triethylamine $\left(2.5 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$ and water $\left(19 \mathrm{~cm}^{3}\right)$ in the required amounts of dry dichloromethane afforded a 5.3:1 mixture of the aaldehydes syn- and anti-28g (1.4 $\mathrm{g}, 83 \%$), as an oil R_{F} [hexane-dichloromethane (1:1)] 0.30 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: [* refers to $\operatorname{syn-28g}$; ** refers to anti-28g] 9.85**, 9.49* $(1 \mathrm{H}, 2 \mathrm{~d}, J 6$ and 2.9, CHO), 7.79-6.73 ($20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph), 4.63*, $4.35^{* *}(1 \mathrm{H}$, $2 \mathrm{dd}, J 2.9$ and $4.4, J 2.5$ and $6, \mathrm{CHSPh}), 3.01-2.73(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ and CHMe$), 2.24-1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $1.57^{* *}, 1.38^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 7.2$ and $6.9, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$: $($ syn28g) 14.1 (CHMe), $30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$), 39.5 (CHMe), 39.9 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.8(\mathrm{CHPhS}), 73.2\left[C(\mathrm{PhS})_{2}\right], 125.9$, 127.9, $128.1,128.3,128.7,128.8,129.3,132.2,136.7,136.8$ (ArC), 131.4, 131.5, 132.3, 141.1 ($\mathrm{ArC-S}, \mathrm{ArC-C}$) and 191.7 (CHO); $m / z(s y n-28 g) 405\left(4.5 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 295\left(30, \mathrm{M}^{+}-\mathrm{PhSH}-\right.$ $\mathrm{PhS}), 110(90, \mathrm{PhSH}), 109(33, \mathrm{PhS})$ and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 405.1355 . \mathrm{C}_{25} \mathrm{~N}_{25} \mathrm{OS}_{2}$ requires M $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 405.1341$).
(2SR,3RS,4RS)- and (2RS,3SR,4RS)-4-Methyl-3,5,5-tris-(phenylthio)heptan-2-ol 29b. Typical Procedure.-An 11:1 mixture of the syn- and anti-aldehydes $\mathbf{2 8 b}(745 \mathrm{mg}, 1.70 \mathrm{mmol})$ dissolved in a mixture of hexane ($3 \mathrm{~cm}^{3}$) and ether $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of methyllithium $\left(1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in ethyl ether; $1.3 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}$) in hexane $\left(1.3 \mathrm{~cm}^{3}\right)$ kept at $-78^{\circ} \mathrm{C}$ under argon. After 45 min at this temperature, the cooling bath was removed, the mixture allowed to warm to room temperature ($c a .30 \mathrm{~min}$) and stirring continued for 15 min; water ($10 \mathrm{~cm}^{3}$) was then added to the mixture. The organic phase was separated and the aqueous layer re-extracted with ether ($2 \times 10 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The crude product was purified by flash column chromatography on silica gel eluting with dichloromethane to give an $11: 1$ mixture of the alcohols anti,syn- and anti,anti-29b ($520 \mathrm{mg}, 67 \%$) as an oil R_{F} (dichloromethane) $0.44 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH})$ and 1570 (PhS); $m / z 344$ ($11 \%, \mathbf{M}^{+}-\mathrm{PhSH}$), 235 (30, $\mathrm{M}^{+}-$ PhSH - PhS), 167 (58, PhSCHCHOHMe), 166 (25, PhSCCHOHMe), 149 (45, $\mathrm{PhSC}=\mathrm{CHMe}$), 123 (32, PhSCH_{2}), 110 (PhSH) and 109 (34, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 344.1294$. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OS}_{2}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 344.1263$). A portion of this 11:1 mixture of alcohols anti,syn- and anti,anti-29b (70 mg , 0.15 mmol) was treated with benzoic anhydride ($87 \mathrm{mg}, 0.38$ mmol) and DMAP ($95 \mathrm{mg}, 0.77 \mathrm{mmol}$) in dry dichloromethane ($2.5 \mathrm{~cm}^{3}$) at room temperature under argon for 24 h . The solution was poured into $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid (10 cm^{3}), extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$) and the
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under pressure. This $11: 1$ mixture of esters $(2 S R, 3 R S, 4 R S)$ - and ($2 R S, 3 S R, 4 R S$)-4-methyl-3,5,5-tris(phenylthio)-heptan-2-yl benzoates 30b was separated by flash column chromatography on silica eluting with hexane-dichloromethane (1:1) to give the pure ester anti,syn-30b ($65 \mathrm{mg}, 78 \%$) as an oil R_{F} [hexanedichloromethane (1:1)] 0.38; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1705(\mathrm{CO})$ and $1575(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.97-7.15(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph), $5.35(1 \mathrm{H}, \mathrm{dq}, J 5.8$ and 6.2, MeCHOCOPh), $4.46(1 \mathrm{H}, \mathrm{d}, J$ 5.8, CHSPh $), 2.60(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{C} H \mathrm{Me}), 1.91-1.80(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.64-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Me}\right), 1.42(3 \mathrm{H}, \mathrm{d}, J 6.2$, $M e \mathrm{CHOCOPh}), 1.31(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e)$ and $1.04(3 \mathrm{H}, \mathrm{t} J$ 7.3, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 13.3(\mathrm{CHMe}), 17.8$ (MeCHOCOPh), $30.4\left(\mathrm{CH}_{2}\right), 40.7$ (CHMe), $54.1(\mathrm{CHSPh})$, $74.9(\mathrm{MeCHOCOPh}), 75.4\left[C(\mathrm{SPh})_{2}\right], 126.4,128.2,128.4$, $128.5,128.8,129.1,129.2,129.8,129.9,130.4,132.7,137.3$ (ArC), 130.3, 131.7, 132.6, 137.0 (ArC-C, ArC-S) and 165.8 $\left(\mathrm{CO}_{2} \mathrm{Ph}\right) ; m / z 448\left(2 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 339\left(1, \mathrm{M}^{+}-\mathrm{PhSH}-\right.$ $\mathrm{PhS}), 217\left(14, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhCO}_{2}\right), 110(\mathrm{PhSH})$ and 105 ($100, \mathrm{PhCO}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 448.1538$. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 448.1538$).
(2SR,3RS,4RS)- and (2RS,3SR,4RS)-4-Methyl-3,5,5-tris-(phenylthio)octan-2-ol 29d.-In the same way, a 1.65 : 1 mixture of syn- and anti-aldehydes $\mathbf{2 8 d}(142 \mathrm{mg}, 0.31 \mathrm{mmol})$, dissolved in a mixture of hexane $\left(0.6 \mathrm{~cm}^{3}\right)$ and ether $\left(0.4 \mathrm{~cm}^{3}\right)$, and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether; $0.24 \mathrm{~cm}^{3}, 0.33$ mmol) gave a crude product purified by flash column chromatography on silica eluting with dichloromethane to give a $2.6: 1$ mixture of the alcohols anti,syn- and anti-anti-29d (76 $\mathrm{mg}, 52 \%$) as an oil R_{F} (dichloromethane) $0.38 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3600-3200(\mathrm{OH})$ and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (* refers to the major isomer anti,syn-29d and ${ }^{* *}$ refers to the minor isomer anti,anti-29d) 7.72-7.17 (15 H, m, PhS), 5.07**, 3.90-3.86* (1 $\mathrm{H}, \mathrm{q}, J 6.4$, and $\mathrm{m}, \mathrm{CHOH}), 4.13^{*}, 3.96^{* *}(1 \mathrm{H}, 2 \mathrm{~d}, J 4.1$ and $1.9, \mathrm{C} H \mathrm{SPh}), 2.66^{* *}, 2.60^{*}(1 \mathrm{H}, 2 \mathrm{dq}, J 1.9$ and 7 , and $J 1$ and 7 , CHMe), 2.43-2.00 (1 H, br s, OH), 1.78-1.40 [1 H, m, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 1.37^{* *}, 1.25^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 7$ and $7, \mathrm{CHMe}$), 1.33**, $1.18^{*}(3 \mathrm{H}, 2 \mathrm{~d}, J 6.4$ and $6.4, \mathrm{HOCHMe})$ and $1.04(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.1^{* *}, 13.7^{* *}, 14.0^{*}, 14.2^{*}\left(\mathrm{CH}_{2} M e\right.$ and CHMe), 17.3**, 17.9* (MeCHO), 20.6*, 23.9** ($\mathrm{CH}_{2} \mathrm{Me}$), 39.4*, 39.9** $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 40.4^{*}, 47.5^{* *}$ (CHMe), 58.4^{*}, 59.3** (CHSPh), 67.3**, 70.7* (MeCOH), 74.6**, 75.0* $\left[C(\mathrm{SPh})_{2}\right], 126.3,126.6,127.1,127.4,128.3,128.4,128.7,128.9$, $129.0,129.2,129.3,131.2,132.0,136.0,136.3,136.7,136.8$, $137.1,137.2,137.4(\mathrm{ArC}), 130.2,131.6,131.7,132.2$ and 132.9 (ArC-S); $m / z 358\left(1 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 249\left(23, \mathrm{M}^{+}-\mathrm{PhSH}-\right.$ PhS), 166 (43, MeCHOHCSPh), 149 (25, MeCHCSPh), 110 (100, PhSH) and 109 (42, PhS) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$, 358.1418. $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}$ requires 358.1419).
(2SR,3RS,4RS)- and (2RS,3SR,4RS)-4-Methyl-7-phenyl-3,5,5-tris(phenylthio)heptan-2-ol $\mathbf{2 9 g}$.-In the same way, a 5.3:1 mixture of syn- and anti-aldehydes $\mathbf{2 8 g}(1.35 \mathrm{~g}, 2.62 \mathrm{mmol})$ dissolved in hexane ($5 \mathrm{~cm}^{3}$) and ether ($3 \mathrm{~cm}^{3}$), and methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether; $2 \mathrm{~cm}^{3}, 2.8 \mathrm{mmol}$) gave after purification by flash column chromatography on silica eluting with dichloromethane the alcohols anti,syn-29g (0.8 g , 57%) as an oil R_{F} (dichloromethane) $0.46 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3620-$ $3100(\mathrm{OH})$ and $1575(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81-6.85(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 4.19(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{CHSPh}), 3.91(1 \mathrm{H}, \mathrm{dq}, J 4.1$ and 6.3, $\mathrm{MeCHOH}), 3.03\left(1 \mathrm{H}, \mathrm{dt}, J 4\right.$ and $\left.13.3, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.76$ $\left(1 \mathrm{H}, \mathrm{dt}, J 4.8\right.$ and $\left.13, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 2.71(1 \mathrm{H}, \mathrm{q}, J 7.2$, $\mathrm{CHMe}), 2.16\left(2 \mathrm{H}, \mathrm{dt}, J 4.8\right.$ and $13.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$ and OH$)$, $1.90\left(1 \mathrm{H}, \mathrm{dt}, J 4\right.$ and $\left.13.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.34(3 \mathrm{H}, \mathrm{d}, J 7.2$, $\mathrm{CHMe})$ and $1.21(3 \mathrm{H}, \mathrm{d}, J 6.3, M e \mathrm{CHOH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.3$ $(\mathrm{CHMe}), 19.8(\mathrm{MeCHOH}), 30.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 38.9\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 40.4(\mathrm{CHMe}), 58.1(\mathrm{CHSPh}), 70.7(\mathrm{HOCHMe}), 74.3$
$\left[C(\mathrm{SPh})_{2}\right], 125.8,126.7,128.3,128.5,128.6,128.8,129.1,129.2$, 136.0, 136.6, $136.8(\mathrm{ArC}), 131.1,131.8,132.7$ and 141.4 (ArC-S and ArC - C); $m / z 420\left(2 \%, \mathrm{M}^{+}-\mathrm{PhSH}\right), 311\left(46, \mathrm{M}^{+}-\right.$ $\mathrm{PhSH}-\mathrm{PhS}), 201 .\left(32, \mathrm{M}^{+}-\mathrm{PhSH}-\mathrm{PhSH}-\mathrm{PhS}\right), 167$ (61, PhSCHCHMeOH), 149 (37, $\mathrm{PhSC}=\mathrm{CHMe}$), 123 (32, $\left.\mathrm{PhSCH}_{2}\right), 110(100, \mathrm{PhSH})$ and $109(53, \mathrm{PhS})$ (Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{6}, 420.1590 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{OS}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 420.1590$) and a 2.7:1 mixture of the alcohols anti,syn- and anti,anti- $\mathbf{2 9} \mathrm{g}$ $(0.220 \mathrm{~g}, 16 \%)$, as an oil, R_{F} (dichloromethane) 0.46 and 0.42 , respectively. A portion of the alcohol anti,syn-29g (107 mg, 0.20 $\mathrm{mmol})$ was treated with benzoic anhydride ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$) and DMAP ($125 \mathrm{mg}, 1.02 \mathrm{mmol}$) in dry dichloromethane (3 cm^{3}) as above to give the ester ($2 S R, 3 R S, 4 R S$)-4-methyl-7-phenyl-3,5,5-tris(phenylthio)heptan-2-yl benzoate anti,syn-30g ($93 \mathrm{mg}, 74 \%$) as a white solid; m.p. $104-105^{\circ} \mathrm{C}$ (from hexane); R_{F} [hexane-dichloromethane (1:1)] $0.40 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1705$ (CO) and $1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.82-6.84(25 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and $\mathrm{Ph}), 5.34(1 \mathrm{H}, \mathrm{dq}, J 6$ and 6.3 , MeCHOCOPh$), 4.46(1 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{CHSPh}), 2.97\left(1 \mathrm{H}, \mathrm{dt}, J 3.8\right.$ and $\left.13.8, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.75$ ($1 \mathrm{H}, \mathrm{dt}, J 5$ and $\left.13.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.67(1 \mathrm{H}, \mathrm{q}, J 6, \mathrm{CHMe}$), $2.26\left(2 \mathrm{H}, \mathrm{dt}, J 5\right.$ and $13.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$ and OH$), 1.96(1 \mathrm{H}$, dt, $J 3.8$ and $\left.13.8, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 1.41(3 \mathrm{H}, \mathrm{d}, J 7.2$, $M e \mathrm{CHOCOPh})$ and $1.37(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.5$ (CHMe), 179 (MeCHOCOPh), $31.0 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 39.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 41.5(\mathrm{CHMe}), 55.1(\mathrm{CHSPh}), 74.1$ [C(SPh) ${ }_{2}$], 74.8 (MeCHO), 125.9, 126.5, 128.2, 128.4, 128.6, 128.7, 129.0, 129.1, 129.2, 129.8, 130.9, 132.8, 136.7, 136.9(ArC), 130.3, 131.7, 132.6, 136.8, $141.4(\mathrm{Ar} C$-S and $\mathrm{Ar} C-\mathrm{C})$ and $165.8\left(\mathrm{CO}_{2} \mathrm{Ph}\right) ; \mathrm{m} / \mathrm{z}$ $524\left(0.3 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 415\left(37, \mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}\right), 293$ (88, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhS}-\mathrm{PhCO}_{2}\right), 110(86, \mathrm{PhSH})$ and $105(100$, PhCO) (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 524.1352. $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 524.1836$).

Rearrangement of (2SR,3RS,4RS)- and (2RS,3SR,4RS)-4-Methyl-3,5,5-tris (phenylthio)heptan-2-ol 29b.-By method B, an $11: 1$ mixture of anti,syn- and anti,anti-alcohols $29 \mathrm{~b}(197 \mathrm{mg}, 0.43$ $\mathrm{mmol})$, triethylamine $\left(0.38 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.054 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride $\left(6 \mathrm{~cm}^{3}\right)$ gave, after flash column chromatography on silica eluting with hexane-dichloromethane (2:1), a 2.4:1 mixture of the vinyl sulfides (E) - and (Z) -(4RS,5RS,6SR)-4-methyl-3,5,6-tris(phenylthio)hept-2-ene 31b ($117 \mathrm{mg}, 53 \%$), as an oil R_{F} [hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)\right] 0.48$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.57-7.17(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $6.18(Z), 5.54(E)(1 \mathrm{H}, \mathrm{q}, J 6.9$ and $7.1, \mathrm{C} H=\mathrm{CSPh}), 3.82-3.78$ $(Z), 3.62-3.59(E)(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and CHSPh$), 3.21(Z), 3.17$ $(E)(1 \mathrm{H}, \mathrm{dq}, J 0.7$ and 6.8 , and $\mathrm{m}, \mathrm{PhSCHMe}), 1.85(E), 1.75(Z)$ ($3 \mathrm{H}, 2 \mathrm{~d}, J 6.9$ and $7.1, M e \mathrm{CH}=\mathrm{CH}_{2}$), $1.40(E), 1.39(Z)(3 \mathrm{H}, 2$ $\mathrm{d}, J 6.7$ and $6.7, \mathrm{CHMe}), 1.28(Z)$ and $1.21(E)(3 \mathrm{H}, 2 \mathrm{~d}, J 6.8$ and $J 6.8, \mathrm{PhSCH} M e) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.7(E), 16.1(Z)(\mathrm{CH} M e)$, $16.7(E), 17.6(Z)(M e \mathrm{CH}=\mathrm{CSPh}), \quad 18.3(Z), 19.1(E)$ ($\mathrm{PhSCH} M e$), $41.5(E), 45.7(Z)(C H M e), 48.1(E), 48.1(Z)$ (PhSCHMe), 60.7 (E), $61.0(Z)(C H S P h), 125.7,126.0,126.3$, $126.5,126.9,127.2,127.5,127.6,128.3,128.5,128.8,128.9$, $129.0,129.1,130.8,130.9,131.4,131.9,132.4,132.5,133.8$ ($\mathrm{ArC}, \mathrm{MeCH}=\mathrm{CSPh}$), 134.7, 135.5, 137.8 and 138.5 (ArC-S, $\mathrm{MeCH}=\mathrm{CSPh}) ; m / z 436\left(0.8 \%, \mathrm{M}^{+}\right), 327\left(58, \mathrm{M}^{+}-\mathrm{PhS}\right), 217$ (26, $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}$), 149 (100, MeCHCSPh), 137 (53, MeCHSPh), 110 (75, PhSH) and 109 (74, PhS) (Found: M^{+}, 436.1329. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~S}_{3}$ requires $M, 436.1347$).

Rearrangement of (2SR,3RS,4RS)- and (2RS,3SR,4RS)-4-Methyl-3,5,5-tris (phenylthio)octan-2-ol 29d.-By method B, a 2.6:1 mixture of anti,syn- and anti,anti-alcohols $29 \mathrm{~d}(32 \mathrm{mg}$, $0.07 \mathrm{mmol})$, triethylamine $\left(0.057 \mathrm{~cm}^{3}\right)$ and thionyl chloride ($0.009 \mathrm{~cm}^{3}$) in carbon tetrachloride ($1 \mathrm{~cm}^{3}$) gave, after flash column chromatography on silica eluting with hexanedichloromethane (2:1), a 2.7:1 mixture of the vinyl sulfides (E) and (Z)-(4RS,5RS,6SR)-4-methyl-3,5,6-tris(phenylthio)oct-2-
ene 31d ($17 \mathrm{mg}, 55 \%$) as an oil R_{F} [hexane-dichloromethane (2:1)] 0.50; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1570(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.52-7.17$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.04(Z), 5.48(Z)(1 \mathrm{H}, 2 \mathrm{t}, J 7$ and 7.6, $\mathrm{C} H=\mathrm{CSPh}), 3.78-3.69(E), 3.57-3.52(Z)(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and CHSPh $)$, 3.20-3.13 (E), 2.98-2.92 (Z) ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhSCHMe}$), 2.35-2.08 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2} \mathrm{CH}=\mathrm{CSPh}\right), 1.36(Z), 1.35(E)(3 \mathrm{H}$, $2 \mathrm{~d}, J 6.5$ and $6.7, \mathrm{CH} M e), 1.25(Z)$ and $1.15(E)(\mathrm{C} \mathrm{H}, 2 \mathrm{~d}, J 6.7$ and $6.8, \mathrm{PhSCH} M e) ; m / z 450\left(2 \%, \mathrm{M}^{+}\right), 341\left(100, \mathrm{M}^{+}-\mathrm{PhS}\right)$, 231 (28, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{PhSH}\right), 149$ (86, MeCHCSPh), 137 (46 $\mathrm{MeCHSPh}), 110(42, \mathrm{PhSH})$ and $109(30, \mathrm{PhS})$ (Found: M^{+}, 450.1503. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~S}_{3}$ requires $M, 450.1503$).

Rearrangement of (2SR,3RS,4RS)-4-Methyl-7-phenyl-3,5,5-tris(phenylthio)heptan-2-ol 29g.-By method B, the anti,synalcohol $29 \mathrm{~g}(132 \mathrm{mg}, 0.25 \mathrm{mmol})$, triethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$ and thionyl chloride $\left(0.030 \mathrm{~cm}^{3}\right)$ in carbon tetrachloride $\left(6 \mathrm{~cm}^{3}\right)$ gave, after flash column chromatography on silica eluting with hexane-dichloromethane (2:1), a $4: 1$ mixture of the vinyl sulfides (E) - and (Z)-(4RS,5RS,6SR)-4-methyl-1-phenyl-3,5,6-tris(phenylthio)hept-2-ene $31 \mathrm{~g}\left(76 \mathrm{mg}, 60 \%\right.$), as an oil R_{F} [hexane-dichloromethane (2:1)] 0.46; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1570$ $(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-6.87(20 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ and Ph$), 6.19(Z)$, $5.55(E)(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and 7.8 , and $\mathrm{t}, J 7.4, \mathrm{C} H=\mathrm{CSPh}), 3.81(Z)$, $3.80(E)(1 \mathrm{H}, 2$ dd, $J 7.8$ and 15.6 , and $J 7.8$ and 15.6, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 3.60(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C} H \mathrm{SPh}), 3.51(1 \mathrm{H}, \mathrm{dq}, J$ 2.3 and $6.4, C H M e), 3.41(Z), 3.39(E)(1 \mathrm{H}, 2 \mathrm{dd}, J 6.5$ and 15.6 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CSPh}\right), 3.30(E), 3.02(Z)(1 \mathrm{H}, \mathrm{m}, \mathrm{PhSC} H \mathrm{Me}), 1.36$ $(Z), 1.33(E)(3 \mathrm{H}, 2 \mathrm{~d},-6.7$ and $6.7, \mathrm{CH} M e)$ and $1.15(3 \mathrm{H}, \mathrm{d}, J$ 6.8, $\mathrm{PhSCHM} M$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.7(E), 17.2(Z), 18.6(Z), 19.3$ $(E)(\mathrm{CHMe}$ and PhSCHMe$), 34.7(E), 36.5(Z)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $41.7(E), 45.0(Z)(C H M e), 47.9(E), 48.3(Z)(\mathrm{PhSCHMe})$, $60.7(E), 60.8(Z)(C H S P h), 126.0,126.1,126.1,126.2$, $126.3,126.9,127.5,128.1,128.4,128.5,128.7,128.8,129.0$, $129.1,130.7,130.8,132.3,132.4,132.5,132.8,137.3$ (ArC, $\mathrm{MeCH}=\mathrm{CSPh}), 135.5,136.6,137.7,138.9$ and 139.9 (ArC-S, $\mathrm{MeCH}=C \mathrm{SPh}) ; m / z 403\left(7 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 149$ (58, MeCHCSPh), 137 (38, MeCHSPh), $110(100, \mathrm{PhSH}), 109(63, \mathrm{PhS})$ and $91\left(98, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 403.1537 . M-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$ requires 403.1548).

Acknowledgements

We thank the British Council for a Fleming Fellowship (to M.-J. V.).

References

1 P. Blatcher and S. Warren, J. Chem. Soc., Perkin Trans 1, 1985, 1055. 2 (a) [1,2] PhS shift: P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. I, 1977, 1131, 2272; (b) [1,3]-PhS shift: P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 2125.
3 M.-J. Villa and S. Warren, Tetrahedron Lett., 1989, 30, 5933.
4 P. de Mayo, Rearrangements in Ground and Excited States, Academic Press, New York, 1980.
5 S. M. Tuladhar and A. G. Fallis, Tetrahedron Lett., 1987, 28, 523.
6 M.-J. Villa and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 1569.
7 S. Yamagiwa, N. Hoshi, H. Sato, H. Kosugi and H. Uda, J. Chem. Soc., Perkin Trans. 1, 1978, 214.
8 M. N. Paddon-Row, N. G. Rondan and K. N. Houk, J. Am. Chem. Soc., 1982, 104, 7162.
9 (a) K. Tomioka, H. Kawasaki and K. Koga, Tetrahedron Lett., 1985, 26, 3027; (b) H. Kawasaki, K. Tomioka and K. Koga, Tetrahedron Lett., 1985, 26, 3031; (c) K. Tomioka, M. Sudani, Y. Shinmi and K. Koga, Chem. Lett., 1985, 329.

10 (a) I. Fleming, J. H. M. Hill, D. Parker and D. Waterson, J. Chem. Soc., Chem. Commun., 1985, 318; (b) I. Fleming and J. J. Lewis, J. Chem. Soc., Chem. Commun., 1985, 149; (c) H.-F. Chow and I. Fleming, Tetrahedron Lett., 1985, 25, 397; (d) W. Bernhard, I. Fleming and D. Waterson, J. Chem. Soc., Chem. Commun., 1984, 28; (e) Y. Yamamoto and K. Maruyama, J. Chem. Soc., Chem. Commun., 1984, 904.

11 (a) B. Capon and S. P. McManus in Neighbouring Group Participation, 1976, Plenum Press, New York; (b) R. Bird and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1973, 1221; (c) E. Block in Reactions of Organosulfur Compounds, 1978, Academic Press, New York.
12 (a) P. Brownbridge, I. Fleming, A. Pearce and S. Warren, J. Chem. Soc., Chem. Commun., 1976, 751; (b) I. Fleming, I. Paterson and A. Pearce, J. Chem. Soc., Perkin Trans. I, 1981, 256.

13 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651.
14 E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399 and references cited therein.

15 K. Chibale and S. Warren, Tetrahedron Lett., 1994, 35, 3991.
16 V. K. Aggarwal, I. Coldham, S. McIntyre, F. H. Sansbury, M.-J. Villa and S. Warren, Tetrahedron Lett., 1988, 29, 4885.
17 J. Eames, S. McIntyre and S. Warren, unpublished results.
18 S. K. Armstrong, E. W. Collington and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 515.

Paper 4/02967D
Received 18th May 1994
Accepted 7th July 1994

[^0]: \dagger The carbon chain is drawn in its most extended form: the compound is $s y n$ if PhS and Me are on the same side, and anti if they are on opposite sides. This is the convention introduced by Masamune. S. Masamune, T. Kaiho and D. S. Garvey, J. Am. Chem. Soc., 1982, 104, 5521; S. Masamune, W. Choy, J. S. Petersen and L. R. Sita, J. Am. Chem. Soc., 1985, 24, 1.

[^1]: * The syn and anti convention suggested by Masamune is used: the first syn or anti refers to the relationship of OH and PhS or PhS and PhS in the 2,3 positions and the second to the PhS and Me in the 3,4 positions when the chain is drawn in its extended form. See ref. 6.

